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Figure 1: Our avatar generation system allows the user to reshape and resize an input body scan according to human proportions. The
reshaped scans are then automatically rigged into skinned virtual characters, which can be animated in an interactive virtual environment.

Abstract

3D scans of human figures have become widely available through
online marketplaces and have become relatively easy to acquire us-
ing commodity scanning hardware. In addition to static uses of
such 3D models, such as 3D printed figurines or rendered 3D still
imagery, there are numerous uses for an animated 3D character that
uses such 3D scan data. In order to effectively use such models as
dynamic 3D characters, the models must be properly rigged before
they are animated. In this work, we demonstrate a method to au-
tomatically rig a 3D mesh by matching a set of morphable models
against the 3D scan. Once the morphable model has been matched
against the 3D scan, the skeleton position and skinning attributes
are then copied, resulting in a skinning and rigging that is similar
in quality to the original hand-rigged model. In addition, the use
of a morphable model allows us to reshape and resize the 3D scan
according to approximate human proportions. Thus, a human 3D
scan can be modified to be taller, shorter, fatter or skinnier. Such
manipulations of the 3D scan are useful both for social science re-
search, as well as for visualization for applications such as fitness,
body image, plastic surgery and the like.
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1 Introduction

Recent advances in scanning technology and methods have enabled
the acquisition of human models through a variety of photogram-
metry methods using RGB cameras, as well as through the use of
commodity RGB-D sensors, such as the Microsoft Kinect. Such
human 3D models can be used as static imagery in a 3D simulation
or as a printed model [Li et al. 2013]. However, the use of such
3D models as dynamic 3D characters requires additional efforts to
properly rig the model in order to provide the control mechanism
and deformation behavior. Since a human subject 3D scan can con-
tain a high level of detail, improper rigging caused by bad bone po-
sitioning can cause deformation artifacts which are relatively easy
to see on such models. This is in contrast with cartoony or stylized
models where such detail is can be hidden by the resolution or style
of the 3D model. Thus, high quality rigging is necessary for 3D
human scans.

There is a class of 3D applications or simulations that would bene-
fit from a just-in-time acquisition of a 3D animated character from
a human scan. Such applications or simulations would likewise re-
quire a rapid and accurate rigging. In this work, we demonstrate the
use of a 3D human model database to generate a morphable model
to automatically fit a 3D human scan. Once our morphable model
is constructed to fit the 3D human scan, we demonstrate the transfer
of attributes from the model onto the scan. Thus, we can transfer



the location of skeletal bones, as well as the skinning deformation
information. The quality of the skinning and bone location is of
similar quality to that of the original rigging information, that can
be performed once by a professional 3D rigger. This is in contrast to
a number of other automatic rigging methods that either rely on the
geometry to determine the skeletal location, or necessitate multiple
example meshes for input.

In addition to transferring the bone location and skinning informa-
tion, our morphable model allows us to modify the physical at-
tributes of our 3D human scan, such as height, weight, or other
physical features. The physical attributes change with human pro-
portions that are captured in the human model database, allowing
us to model the effects of getting fatter, thinner, taller, shorter and
so forth. Such modifications could be useful for fitness visual-
ization, plastic surgery visualization, avatar enhancement such as
adding height or muscularity, and so forth. Such reshaping has been
demonstrated on 2D images [Zhou et al. 2010] or videos [Jain et al.
2010] using manual annotation, while ours works on 3D models
automatically without annotations.

2 Related Work

2.1 3D Avatar Generations From 3D Scans

3D shape reconstruction has been extensively explored, among
which the 3D shape reconstruction of human subjects is of specific
interest to computer vision and computer graphics, with its poten-
tial applications in recognition, animation and apparel design. With
the availability of low-cost 3D cameras (eg, Kinect, RealSense, and
StructureSensor), many inexpensive solutions for 3D human shape
acquisition have been proposed. The work by [Tong et al. 2012]
employs three Kinect devices and a turntable and the work done in
[Zeng et al. 2013] utilizes two Kinect sensors in front of the self-
turning subject. More recently, solutions which utilize only a sin-
gle 3D sensor have been proposed, and this allows for home-based
scanning and applications. The works in [Wang et al. 2012; Cui
et al. 2013; Li et al. 2013] asks the subject to turn in front of a fixed
3D sensor, and multiple key poses are captured and then aligned
in a multi-view non-rigid manner to generate the final model. All
these works capture the static geometry of human subjects, and ad-
ditional efforts are necessary to convert the static geometry into an
animated virtual character.

The research works in [Wu et al. 2013; Vlasic et al. 2009] focus on
capturing the dynamic shapes of an actor’s full body performance.
The capturing sessions usually require a dedicated setup with mul-
tiple cameras and are more expensive than capturing only the static
geometry. The resulting dynamic geometries can be played back
to produce the animations of the scanned actor. Instead of play-
ing back the captured mesh sequences, the work by [Shapiro et al.
2014] demonstrates a process of scanning human subjects and auto-
matically generate 3D virtual characters from the acquired static 3D
models via automatic rigging. The users can then control and ani-
mate their own 3D figures in a simulated environment within min-
utes with animation retargeting [Feng et al. 2013]. The goal of our
work aligns with this method to rapidly produce a 3D avatar. How-
ever, we focus on adding the reshaping capability and improving the
auto-rigging quality in the automatic avatar generation pipelines.

2.2 Morphable Human Models

Recent advances in 3D scanning and analysis of human body shape
space help produce the morphable human models we utilize in this
work. The pioneering work by Allen et al [Allen et al. 2003] fits
a template mesh onto a database of 3D human body scans to build

a set of body shape meshes with consistent topology. Such sets
of consistent meshes provide an easy way to analyze the human
body shape space via standard methods such as pricipal component
analysis (PCA). Therefore it is straightforward to morph a human
model into various sizes and proportions by adjusting such proper-
ties in body shape space. More recently, other methods try to extend
the analysis to pose-dependent deformations by encoding various
body shape deformations due to both different identities and poses
[Anguelov et al. 2005; Hasler et al. 2009a; Allen et al. 2006]. These
works result in a morphable human model that can be used to easily
generate a human body shape of any identities and poses.

Such morphable models can be used for many applications such
as reshaping human bodies in still images [Zhou et al. 2010] or
videos [Jain et al. 2010], completing a partial 3D body scan with
holes [Weiss et al. 2011], or estimating the 3D body shapes under
clothing [Hasler et al. 2009b], or creating 2D imagery in real time
from RGB-D scans [Richter et al. 2012]. In our work, we apply the
SCAPE method [Anguelov et al. 2005] to build a morphable model,
and then use it for building mesh correspondences and reshaping
existing 3D human scans.

The commercial system BodyHub [Inc. 2015] allows the construc-
tion of a 3D model using measurements of a 3D scan. Our work
differs in that we are interested in preserving the original model and
detail, such as textures. By contrast, BodyHub discards the original
scan data in favor of a 3D model that represents the approximate
shape and size of the original scan. Thus, the scan data is merely
used as an entry point to generate a 3D model from a template.

2.3 Automatic Rigging

Although it is relatively easy to obtain static 3D character mod-
els through 3D scanning, it requires additional effort to create an
animated virtual character. A 3D model needs to be rigged with
a skeleton hierarchy and appropriate skinning weights. Tradition-
ally, this process needs to be done manually and is time consuming
even for an experienced animator. An automatic skinning method
called Pinocchio is proposed in [Baran and Popović 2007] to reduce
the manual efforts of rigging a 3D model. The method produces
reasonable results but requires a connected and watertight mesh to
work. The method proposed in [Shapiro et al. 2014] first voxelizes
the mesh to remove all topological artifacts and solve for 3D skele-
ton in voxel space. Therefore it can work on generic models that are
created by 3D artists. The method proposed by [Bharaj et al. 2011]
complements the previous work by automatically skinning a multi-
component mesh. It works by detecting the boundaries between dis-
connected components to find potential joints. Thus the method is
suitable for rigging the mechanical characters that usually consist of
many components. The work by [Jacobson et al. 2011] can be used
to produce smooth blending weights with intuitive deformations.
However, their method does not provide a mechanism to automati-
cally generate the skeletal rig. Other rigging algorithms can include
manual annotation to identify important structures such as wrists,
knees and neck [Mix 2013]. Some autorigging methods require a
mesh sequence [Le and Deng 2014; Wang et al. 2007]. By contrast,
we are performing a automatic rigging with only a single mesh.
The work in [Ali-Hamadi et al. 2013] proposed a semi-automatic
pipeline to transfer the full anatomy structure from a source model
to a target model. Their method requires both models to share the
same (u, v) texture space and does not provide the reshaping capa-
bility for the resulting model. Our method of autorigging has sim-
ilarities with the work in [Miller et al. 2010], which demonstrated
the use of rigged body parts which were then assembled into the
full skeleton. We likewise rely on a pre-rigged template. However,
our method requires only a single rig to be defined, rather than a set
of rigs to be matched from a rig database.



In our work, we utilize the SCAPE model to fit a input human body
scan and then automatically rig the input scan by transferring the
high quality rigging from SCAPE model. Although our method is
limited to the 3D scans from human bodies, it produces superior
skinning results compared to other generic auto-rigging methods
such as Pinocchio [Baran and Popović 2007]. Since the input scan
has a photorealistic quality and high levels of detail, an accurate
rigging is needed to properly animate the resulting character. Poor
quality rigging can result in distracting artifacts which can be in-
obvious on cartoony or stylized models that contain large areas of
nondescript surfaces, such as pants or shirts that lack folds, but are
often distracting on models that have high levels of detail, such as
those derived from scans of human subjects. Thus methods that pro-
vide approximate bone positions based on geometry surfaces and
shapes [Pan et al. 2009] are often not sufficient for animation of
photorealistic characters.

3 System Overview

Our goal is to develop a virtual avatar generation system based on
an input 3D body scan. Our system has two main capabilities; (1)
automatic rigging transfer, and (2) interactive avatar reshaping. Fig-
ure 2 summarizes the stages in our avatar generation pipeline. We
start by utilizing SCAPE [Anguelov et al. 2005] to build a mor-
phable human model from a 3D human model database (Section
4.1). In order to allow pose deformations via linear blend skinning,
we also manually rigged a template mesh from the database. There-
fore given a 3D human body scan, we can fit the morphable human
model produced by SCAPE onto the input scan and establish mesh
correspondences between them (Section 4.3).

Once we establish such correspondences, they can be used to trans-
fer both skeleton and skin binding weights from the template mesh
onto the input scan to generate a 3D virtual avatar (Section 5.2).
The user can also interactively adjust semantic body attributes of
the fitted model by exploring body shape space generated from the
database. Such body shape deformations can then be transferred to
the aforementioned 3D scan to further create various virtual avatars
with different body sizes and proportions (Section 5.1). The result-
ing virtual avatars can then be animated in a simulation environment
to execute various behaviors using animation retargeting.

4 Morphable Model Fitting

Our goal is to establish correspondences between a 3D body scan
and the morphable human models. Such correspondences would
allow us to utilize the body shape database to effectively transfer
both body shape deformation as well as rigging information from
morphable models to a body scan. In this section, we present the
technical details about building the morphable models and how to
automatically fit such models to a body scan.

4.1 3D Morphable Human Model

We use a simplified version of SCAPE [Anguelov et al. 2005]
method to create a morphable human model with both pose and
body shape variations. The input is a rigged template mesh and a
database of 3D human models. We use the body model database
provided in [Yang et al. 2014] to build the morphable model.
The template mesh is defined as X = {V, P,B} with |V | ver-
tices, |P | triangles and |B| joints where V = {v1, . . . v|V |},
P = {p1, . . . pn|P |} and B = {b1, . . . b|B|}. Each vertex vi
in X also corresponds to a set of skin binding weights w(vi) =

{w1(vi), . . . w
|B|(vi)} that will be used for linear blend skinning.

The database of 3D human models are defined as U = U1 . . . UN

where U i = {ui1, . . . ui|V |} are vertex positions of i-th shape. The
SCAPE model can then be built from the body mesh database by
learning a set of parameters for both pose and shape dependent de-
formations. Unlike in the original SCAPE model, we use traditional
linear blend skinning to directly compute the pose-dependent de-
formations caused by skeletal poses θ. This simplifies the process
of model fitting later and results in faster pose optimization. On
the other hand, the shape-dependent deformations Sk(β) is the per-
triangle transformation caused by different body shape parameters
β. Here θ is the concatenation of all joint angles in the skeleton and
βi for each shape U i is the coefficient vector corresponding to the
data point in a low-dimensional shape space constructed by princi-
pal component analysis (PCA). Together they can be used to pro-
duce a new body mesh M based on input parameters (θ, β). This
can be done by first solving the Poisson equation, which minimize

arg min
V ′

P |∑
k

‖Sk(β)∇pk −∇p′k‖2 (1)

to obtain a subject specific body shape V ′ based on β, where ∇pk
and ∇p′k is the per-triangle deformation gradient for V and V ′,
respectively. Then the pose dependent deformation can be obtained
via linear blend skinning

T (θ, vi) =

|B|∑
l

wl(vi)Rl(θ)vi (2)

where Rl(θ) is the global bone transformation of joint bl computed
using skeletal hierarchy and joint angles θ. In the following section,
we denote

M(θ, β) = T (θ, V ′(β)) (3)

as a morphable model that can represent the 3D human geometry
of different body shapes and in different poses.

4.2 Skeleton Morphing

Since one of our goals is to transfer the rigging from the morphable
model to a target body scan, the underlying skeleton also needs to
be adjusted to body shape variations by finding new skeletal joint
placements given a new β. However, it is not a trivial task to find
a new location for each joint, since the new mesh can have various
changes in height, size, and limb lengths. In order to have joint
locations changed continuously according to shape parameters, we
choose to represent joint locations as linear combinations of mesh
vertex positions. Specifically, we compute the mean-value coordi-
nates (MVC) [Ju et al. 2005]mj(V ) for each joint bj , j = 1 . . . |B|
in the rigged template mesh X as

bj =
∑
i

mj(vi)vi (4)

, where mj(vi) is the mean-value coordinates of vi for joint bj .
Thus as shape parameters change, we can use vertex positions v′i
from the newly reconstructed body shape V ′ to infer new joint lo-
cations.

Figure 3 demonstrates skeleton morphing results for SCAPE mod-
els under different shape parameters.

4.3 Body Shape and Pose Optimization

Once we have a morphable human model, the next task is to fit
the model M(θ, β) to a 3D body scan Y = {Z,F} with vertices
Z = z1, . . . z|Z| and triangles F = f1, . . . f|F |. The fitting is done
by optimizing both θ and β such that the resulting M becomes a



Figure 2: Overview of our avatar reshaping and rigging system.

Figure 3: SCAPE models with different shape parameters. Note
that the corresponding skeleton for each model is also morphed to
fit the new shape.

good approximation for Y . We use a optimization strategy similar
to iterative closest point (ICP) by first finding suitable vertex pairs
between M and Z and then deforming M to match corresponding
vertex positions in Z. Since the two models tend to have different
initial poses, we need to find a good initial estimation of skeletal
pose θinit for M before running the optimization. Our solution is
to extract a skeleton B′ from the input mesh Y using a variation
of Pinocchio automatic rigging method proposed in [Shapiro et al.
2014] and useB′ to determine θinit. AlthoughB′ is not an accurate
skeletal representation and can not be used as the final rigging for
Y , we can use it to infer the initial θinit by hierarchically rotating
each joint bj in B to match corresponding the bone orientation of
b′j in B′ [Feng et al. 2013]. Moreover, we need to find a good
set of vertex pairs between two meshes at each iteration in order
to solve for (θ, β). However, due to the fact that the human form
contains complicated and varying shapes, a naive nearest neighbor
strategy tends to result in incorrect correspondences especially in
the region close to arms and chests. To alleviate this issue, we apply
the strategy that finds the nearest compatible points between two
meshes and use those points to find vertex pairs.

Let C = {(a1, b1), . . . (a|C|, b|C|)} be the vertex index pairs ob-
tained at the beginning of each iteration. In order to avoid the so-
lution to be trapped in a local minimum, we adapt the strategy pro-

posed in [Masuda et al. 1996] to randomly select only one-tenth of
all point pairs into C. Our optimization problem can then formu-
lated as follows :

arg min
θ,β

∑
(a,b)∈C

‖T (θ, v′a(β))− zb‖2 (5)

where v′a(β) is the vertex corresponding to index a in V ′ after solv-
ing equation 1. Equation 5 forms a non-linear least square problem,
and we solve it using the Ceres solver [Agarwal and Mierle 2012].
At each iteration, we solve for (θ, β) based on the current set of ver-
tex correspondences. To improve the optimization efficiency and
the overall fitting results, we solve θ and β separately in an alter-
nating manner during the optimization. After each iteration, a new
set of vertex correspondences betweenM ′ and Z are computed un-
der the new mesh deformations defined by (θ, β). The above pro-
cess is repeated until the least square error defined in equation 5 is
smaller than a threshold or when the maximum number of iterations
is reached. We denote (θ′, β′) as the resulting parameters after op-
timization and will use the morphable model M ′ = M(θ′, β′) as
the approximation of Y in the next section to establish correspon-
dences between them. Such correspondences will be used in the
following sections for transferring the reshaping deformations and
skin rigs. Figure 4 shows the morphable model approximation after
parameter optimization and the resulting skin rig after skin transfer
(Section 5.2).

5 3D Avatar Reshaping and Automatic Rig-
ging

We can use the resulting morphable model approximation from the
previous section to establish mesh correspondences. Such corre-
spondence will be used to both guide the body shape deformations
as well as transfer the rigging for Y . Specifically, we use mor-
phable modelM ′ as the source mesh and the input 3D body scan Y
as target mesh and apply deformation transfer [Sumner and Popović
2004] to reshape Y . On the other hand, high quality skinning rig
transfer is achieved through both mean-value coordinates and har-
monic interpolation.



(A) (B) (C) (D)

Figure 4: The model fitting process starts at an input body scan
(A). The system then performs body and pose optimization to ad-
just the SCAPE parameters and produce an approximate model (B).
The new skeleton (C) for the body scan can then be computed by
transferring mean-value coordinates. Finally, the new smooth skin
weights (D) can be computed using harmonic interpolation.

Original Scan Reshape Scans

Figure 5: (Left) Original Scan (Right) Novel body models after
reshaping. Our system reshapes the original body scan into vari-
ous different body shapes while reasonably preserving human body
sizes and proportions according to the human model database.

5.1 Deformation Transfer

We can adjust M ′ with a new shape parameter β∗ such that M∗ =
M(θ′, β∗). Since the shape parameters β∗ are PCA coefficient vec-
tors, they do not represent any meaningful semantic body features
such as weight, height, and so forth. In order to allow more intu-
itive control over body reshaping, we follow the method in [Allen
et al. 2003] and compute a linear regression f(γ) = β where from
the shape database to build a mapping from semantic feature γ to β.
Thus the new shape parameters can be defined as β∗ = β′+f(∆γ)
to specify the changes in semantic attributes from M ′. Once the
user provides a new β∗ via interactive control, we can compute the
per-triangle deformation gradient Sk∗ using M ′ as the undeformed
mesh and M∗ as the deformed mesh. Once we obtain Sk∗ that en-
codes the body shape deformations due to β∗∗, we can transfer such
deformations to Y . First, we compute the triangle correspondences
between M ′ and Y by finding all closest compatible triangle pairs.
Such correspondences can be then be used to map each Sk∗ for pk
to a matching triangle in Y . A new deformed vertex positions Z∗

can then be computed by solving the same Poisson equation as in
Equation 1. Figure 5 and 7 demonstrates some examples of reshap-
ing the original scan into human models with different body sizes
and proportions.

5.2 Skinning Rig Transfer

The mesh correspondence also helps us transferring the high qual-
ity rigging associated from morphable model M ′ to input 3D
body scan Y . To achieve this, we need to infer both skeletal
joint placements BY = {bY1 , . . . bY|B|} and skin binding weights
w(zi){w1(zi), . . . , w

|B|(zi)} for each vertex zi in Y based on the
rigging provided by M ′.

In order to transfer the skeleton, an intuitive solution is to make use
of the joint positions from the morphed skeleton B′ corresponding
to M ′ by copying over joint positions to form BY . However, since
M ′ is not an exact fit for the scan mesh Y , the resulting joint place-
ments may not be ideal. Thus instead of explicitly transferring the
joint positions, we choose to transfer the mean-value coordinates
from M ′ to Z and implicitly use them to infer the new joint place-
ments. Specifically, for each vertex zi in Y , we compute its MVC
mzji for bj from M ′ as

mj(zi) =
A(zi)

A(Z)

∑
k∈pzi

λk(zi)m
j(vk) (6)

whereA(zi) is the vertex area of zi, pzi is the closest triangle inM ′

from zi, and λk(zi) is the barycentric coordinate after projecting
zi onto pzi. The above formula computes an interpolated mean-
value coordinates for each zi by projecting it onto nearby triangle
in M ′. Since

∑|Z|
i=1m

j(zi) = 1, we normalize mj(zi) after the
finding all of the MVCs for Z to find the final values. Thus the
resulting mj(zi) can be used in the same way like mj(vi) to find
BZ by following equation 4. Moreover, since BZ is represented as
a linear combination of vertices Z in Y , a new morphed skeleton
BZ
∗

can be easily recomputed using the same equation with new
vertex positions from Z∗. This allows a quick and accurate update
of skeleton joint placements during interactive reshaping session.

To compute the skin binding weightsw(zi), we can follow a similar
interpolation scheme by projecting each vertex zi onto nearby tri-
angle and using barycentric coordinate interpolate the skin weights
w(vk) where k ∈ pzi from the nearby triangle pzi . For a low res-
olution mesh where |Z| < |V |, such method would suffice. How-
ever, the input high resolution 3D body scan tends to have more
than 100K vertices while our morphable model has much lower
resolution of about 10K vertices. Therefore simply projecting each
vertex zi usually produces in non-smooth skin weights and results
in various artifacts during run-time skin deformations. To allevi-
ate such problem, we apply harmonic interpolation over the mesh
Z [Zayer et al. 2005] to produce skin weights wzi that are both
smooth and faithful to original skinning weights. We start by find-
ing CM

′
= {(a1, b1), . . . (a|V |, b|V |)}, which is the correspon-

dence vertex index pairs from each vertex in M ′ to its closest com-
patible point inZ and setw(zb) = w(va) for each vertex index pair
(a, b). This will produce the skin weights for a subset of vertices
in Z. The rest of skin weights can then be interpolated by solving
Laplace equation :

Lh = 0 (7)

subject to boundary condition w(zb) = w(va) for all correspon-
dence pairs in CM

′
. Here L is the discrete Laplace-Beltrami op-

erator matrix and h is the resulting harmonic fields that smoothly
interpolate skin weights over mesh Z. Figure 6 shows the com-
parison of transferring skin weights using barycentric coordinates
and using harmonic interpolations. The skin weights produced by
harmonic interpolation are smoother and result in less skin defor-
mation artifacts.



Barycentric Coord. Harmonic Interpolation

Figure 6: Comparison of skin binding weight interpolation
schemes. Directly using barycentric coordinates after vertex pro-
jection results in non-smooth skin weights and problematic skin de-
formations. On the other hand, harmonic interpolation produce
smoother weights and deformations.

Original Scan Reshape Scans

Figure 7: Additional reshaping results from different subjects.
(Left) the original scan, (center and right) scans generated after
reshaping. Our system is capable of producing novel body scans
for the same subject.

6 Results and applications

6.1 Automatic Rigging and Attribute Transfer

Our method provides a fully automatic way to rig a human-like
model with high quality rig. Since we transfer the rig directly
from template model to the input body scan, the rigging quality
depends on both the correspondence accuracy and original rigging
quality. Figure 8 shows the comparison between our automatic rig-
ging method and Pinocchio. Since our method utilizes SCAPE mor-
phable model to find an good correspondences to the input body
scan, the skin rig associated with SCAPE model can be transferred
to the scan without losing much quality. Thus the virtual avatars
generated by our method potentially have more accurate joint place-
ments and skin weights than those generated by automated methods
that are based soley on geometric data. Our system is able to pro-
cess a 3D scan of approximately 100,000 vertices in approximately
one minute using an Intel i7 3.3GHz CPU.

Rest Pose Pinocchio Our Method

Figure 8: Comparison of automatic rigging results between our
method and Pinocchio [Baran and Popović 2007]. Our method
produces superior rigging results with less artifacts and distortions
after skin deformations.

Figure 9: Since the reshaped avatars have different physical body
sizes and proportions, the animated results are different when sim-
ulated in an virtual environment due to a retargeting algorithm that
considers leg length. The avatar with shorter legs runs relatively
slower while the tallest avatar outruns others.



6.2 Avatar Reshaping

Figure 1 and 7 demonstrate some avatar reshaping results generated
from our system. Such reshaping is useful for psychological and
social science research that involves appearance of self or others.
In addition, reshaping is useful for body modification visualization,
such as fitness applications that show weight or muscle gain or loss,
or plastic surgery visualization. The reshaping can be done at inter-
active speeds.

We parameterize the human model database by measuring distances
between points on the model surface that represent height (top of
the head to the ground plane), weight (belly button to back), chest
(back to nipple), hip (left to right hip), leg length (top of leg to
bottom of foot), and arm length (top of shoulder to palm).

Bodily proportions can affect simulation results for systems that ac-
count for such changes in shape. As shown in Figure 9, a locomo-
tion algorithm that takes into account stride length will result in the
taller avatar moving faster, while the shorter avatar moves slower.

7 Discussion and Future Work

Limitations Since both our reshaping and automatic rigging
schemes requires a body shape database to approximate the input
body scan, yhe approximation results are limited by the shape space
spanned by models in the database. Although our method does not
require a very tight fit to the original scan for reshaping since we uti-
lize deformation gradients to solve for deformations implicitly, the
model fitting may be inaccurate if the scanned subject is wearing
excessive clothing. Thus the subsequent reshaping results would
become unnatural. Currently our method is restricted to rig models
that have similar body shapes to a real human. Thus it is not suit-
able for rigging cartoonish characters created by artists. However,
by following similar methodology of rig transfer, we can extend
our system to these characters by using additional shapes to span
the body shape space of cartoonish characters.

8 Conclusion

Recent advances in scanning technology have enabled widespread
acquisition of 3D models from human subjects. In order to use
such 3D models for dynamic animation as 3D characters in virtual
characters, such 3D static models must be properly rigged. In this
paper, we present a method for automatically rigging and skinning
of a single 3D human scan by using a human figure database and
morphable model. Our system let users interactively reshape and
resize the 3D scan according to approximate human proportions.
The rigging and skinning attributes can then be transferred to re-
shaped body scan to produce the virtual avatar. Our rigging results
demonstrate superior skin deformation quality compared to previ-
ous methods for rigging a single static mesh without examples. We
believe our system would be useful both for social science research,
as well as for applications in areas such as fitness, body image, or
plastic surgery where the visualization of body shape manipulations
is important.
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