
COMPUTER ANIMATION AND VIRTUAL WORLDS
Comp. Anim. Virtual Worlds (2013)

Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/cav.1560

RESEARCH ARTICLE

Fast, automatic character animation pipelines
Andrew Feng1, Yazhou Huang2, Yuyu Xu1 and Ari Shapiro1*
1 USC Institute for Creative Technologies, Playa Vista, CA, USA
2 University of California, Merced, Merced, CA, USA

ABSTRACT

Humanoid three-dimensional (3D) models can be easily acquired through various sources, including through online mar-
ketplaces. The use of such models within a game or simulation environment requires human input and intervention in order
to associate such a model with a relevant set of motions and control mechanisms. In this paper, we demonstrate a pipeline
where humanoid 3D models can be incorporated within seconds into an animation system and infused with a wide range of
capabilities, such as locomotion, object manipulation, gazing, speech synthesis and lip syncing. We offer a set of heuristics
that can associate arbitrary joint names with canonical ones and describe a fast retargeting algorithm that enables us to
instill a set of behaviors onto an arbitrary humanoid skeleton on-the-fly. We believe that such a system will vastly increase
the use of 3D interactive characters due to the ease that new models can be animated. Copyright © 2013 John Wiley &
Sons, Ltd.

KEYWORDS

animation; graphics; system; retargeting

*Correspondence

Ari Shapiro, USC Institute for Creative Technologies, Playa Vista, CA, USA.
E-mail: shapiro@ict.usc.edu

1. MOTIVATION

Three-dimensional (3D) characters are commonly seen in
video games, feature films, mobile phone applications and
websites. The generation of an expressive 3D characters
requires a series of stages, including the generation of
a character model, specifying a skeleton for that model,
deforming the model according to the movement of the
skeleton, applying motion and control algorithms under
a framework, and finally instructing the character to per-
form. Each of these processes requires a different skill set.
For example, 3D models are generated by digital modelers
or through hardware-based acquisition, whereas animators
create or apply motion to the characters.

Thus, although many high quality assets such as
humanoid models or motion capture data can be readily
and inexpensively acquired, the integration of such assets
into a working 3D character is not automated and requires
expert intervention. For example, after motion capture data
is acquired, it then needs to be retargeted onto a specific
skeleton. An acquired 3D humanoid model needs a skele-
ton that satisfies the constraints of a real-time game system,
and so forth. Modern game engines provide a means to
visualize and animate a 3D character, but require assem-
bly by a programmer or game designer. The complexity of
animating 3D virtual characters presents an obstacle for the
end user, who cannot easily control a 3D character without

the assistance of specialists, despite the broad availability
of the models, assets and simulation environments.

To address this problem, we present a system that allows
the rapid incorporation of high-fidelity humanoid 3D mod-
els into a simulation. Characters introduced to our system
are capable of executing a wide range of common human-
like behaviors. Unlike a traditional pipeline, our system
requires no intervention from artists or programmers to
incorporate such characters after the assets have been
generated. Our pipeline relies upon two key automated
processes:

(1) An automated skeleton matching process; skeletons
are examined to find a match between the new skele-
ton and one recognized by the simulation. Such a
process looks for similarly named joints, as well as
relies on expected topology of humanoid in order to
recognize similarly functioning body parts.

(2) A retargeting process that can transfer high qual-
ity motion sets onto a new character without user
intervention.

Figure 1 summarizes the pipeline of our system for auto-
matic animation transfer [1]. The pipeline consists of two
main stages. The skeleton analysis stage takes two skele-
tons as input and matches them by remapping their joint
names and aligning their joint local frames. The motion
retarget stage then converts the input motion for the source

Copyright © 2013 John Wiley & Sons, Ltd.

Fast, automatic character animation pipelines A. Feng et al.

Figure 1. The overview of our animation transfer process. The source skeleton and target skeleton are first analyzed to remap their
joint names and realign their joint local frames. Then at the retarget stage, a motion from source skeleton could be converted to fit

the target skeleton via motion data transfer and constraint enforcement.

skeleton so it can be used directly on the target skeleton.
Note that the retarget stage can either be performed off-
line to generate new motions that are suitable for target
skeleton, or directly apply the source motion on the target
skeleton by converting joint angles on the fly.

In addition, the virtual character’s capabilities are gener-
ally based on two different sources:

(a) A set of controllers that can generate motion by
means of rules, learned models, or procedurally-
based methods, and

(b) A set of behaviors generated from animation data
that can be parameterized across various dimen-
sions, such as running speed for locomotion, or
reaching location for interaction with other 3D
objects.

2. RELATED WORK

The first stage of our system utilizes an automated mapping
process, which uses a set of heuristics for mapping an arbi-
trarily named humanoid skeleton onto a common skeleton
with familiar names. To our knowledge, no such algorithm
has been previously published. Many other methods for
registering skeletons require matching names or manual
annotations [2]. At the time of this writing, [3] demon-
strates a process by which a skeleton can be automatically
registered, but no technical details are provided regarding
underlying algorithms and robustness. In addition, we are
aware of systems such as the work of Arikan and Ikemoto
[4], which attempt to automate the acquisition of motion
and models, but have not seen any details regarding the
skeleton rig recognition step.

The second stage of our system utilizes a fast retargeting
system to generate animations appropriate for a particular
skeleton. Retargeting has been an area of much research
in the animation community since Gleicher [5]’s work,
which uses optimization and low-pass filtering to retar-
get motion. Many other retargeting algorithms use various
approaches: Kulpa [6] retargets motion by using angular
trajectories and then, solve several body areas, Lee [7] uses
a hierarchical approach to retargeting, and Mozani [8] uses
an intermediate skeleton and inverse kinematics (IK) to

handle retargeting between skeletons with different topolo-
gies. Kulpa [6] retargets motion through a morphology-
independent representation by using angular trajectories
and then, solving several body areas. Taku [9] uses spa-
tial relationships for motion adaptation, which can handle
many contact-based motion retargeting problems. Zordan
[10] retargets optical data directly onto a skeleton via a
dynamics-based method. Shin [11] uses an online retar-
geting method via an analytical IK method that prefers
the preservation of end effector values. Choi [12] uses a
Jacobian-based IK method for online retargeting.

Our retargeting system attempts to find foot plants
in order to better retarget movement. An online foot
plant detection and enforcement method is presented in
Glardon’s work [13]. By contrast our retargeting method
does not detect foot plants online, and does not modify
the length of limbs as in [14] so as to be compatible with
many game and simulation skeleton formats. Similar to our
goals, the work in [15] is focused on retargeting to crea-
tures with a varying morphology, such as differing number
of legs, tails, or the absence of arms. The system described
in that work relies heavily on IK in performing online retar-
geting based on semantic descriptions of movement. By
contrast, we are interested a relatively fast online retarget-
ing process to transfer high-quality motions onto humanoid
characters that cannot be achieved via simple walk cycles
and reaching constraints. Miller et al. [2] develops a system
to automatically assemble a best-fitting rig for a skeleton.
By contrast, our system assumes the skeleton and model
have already been connected and focus on the use of such
skeleton in real-time simulations.

The characters in our system can be instructed to per-
form certain behaviors using the Behavioral Markup Lan-
guage (BML) [16]. BML provides a high-level XML-based
description of a set of tasks that can be synchronized with
each other. Many systems have been developed to utilize
BML, such as EMBR [17], ELCKERLYC [18], BEAT [19]
and GRETA [20] in addition to our system, SMARTBODY

[21,22]. However, to our knowledge, no other BML-based
systems besides our own have implemented extensive char-
acter locomotion capabilities or generic capabilities such
as object manipulation [23], which are associated with
large sets of behaviors. Because the BML specification
emphasizes speech, head movements, and gestures, most
BML-compatible systems emphasize only those features.

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

A. Feng et al. Fast, automatic character animation pipelines

3. AUTOMATIC SKELETON
JOINT MAPPING
One of the challenges of using an off-the-shelf character
model is that the user has to first set up a joint mapping
table to comply with the skeletal system and motion data
used for the target system/application. This step is crit-
ical for many motion parameterization procedures such
as retargeting, and although being a trivial task, it is
commonly performed by hand.

The joint mapping is a necessary step for online motion
retargeting, because it establishes the proper relationship
between source and target skeletons. Our assumption is
that the input skeletons should have similar anatomy to
a humanoid character. Thus, they should have essential
joints such as spines, elbows, and knees that are required
to perform various actions. Although it is possible for
the two skeleton to have very distinct configurations and
number of joints, as far as these essential bones present,
the joint mapping would allow them to be utilized during
retargeting.

The key advantage of performing the skeleton map-
ping during preprocessing is that the run-time retargeting
step can be simplified to allow real-time performance for
behavior transfer. Without proper joint correspondences,
the retargeting step would require full analysis of input
motions and skeletons to compute the optimal joint angles
for the target skeleton [5]. Although it can yield better
retargeting results, it requires nonlinear optimization and
thus, is not suitable for real-time applications. Note that
existing commercial tools such as (Autodesk, San Rafael,
California) MOTIONBUILDER [24] also requires such joint
mapping step to perform retargeting.

In this submission, we propose a heuristic-based
automatic skeleton joint mapping. Our method utilizes
the skeleton hierarchy structure and symmetries,
combined with keyword searching to help determine
certain key joints in the hierarchy. We have suc-
cessfully validated our automatic mapping method
using character skeletons from various popular sources
(mixamo.com, rocketbox-libraries.com, turbosquid.com,

axyz-design.com, 3DSMax, and MOTIONBUILDER),
results shown in Figure 2.

Our goal is to map a list of arbitrary joints from
any user-defined biped skeleton to the set of canonical
joints on the target skeleton inside our character animation
system. Figure 3 shows the final mapping result to
be achieved from left-side mapped to the right side.
The left side example follows MOTIONBUILDER [24]
standard skeleton joint naming convention, and the right
side is the corresponding names in our SMARTBODY stan-
dard skeleton. We do not intend to map all the joints, and
in many cases, not all joints can be mapped easily. We map
only a basic set of joints that would enable most of our con-
trollers to drive user-defined characters for behaviors such
as gaze, reaching, and locomotion.

Algorithm 1 Search routine for base joint.
1. while i �max_search_depth do
2. J skeleton.joint(i)
3. switch (J .num_children())
4. case 2:
5. if J has 2 symmetrical children then
6. return MAP(base, J)
7. end if
8. case 3:
9. if J has 2 symmetrical children then

10. return MAP(base, J); MAP(spine)
11. end if
12. end switch
13. end while
14. return BASE_NOT_FOUND

The mapping is largely based on heuristics and is specif-
ically adapted to our system. The first step is to find the
character’s base joint. We only consider the situation where
the input skeleton is biped, in which case the base is usually
defined as the parent of spine and two legs. Figure 4 (top
left) generalizes some of the variations found in our testing
skeletons, and the routine is outlined in Algorithm 1. Once
the base joint is found, our algorithm tries to map the
remaining key joints based on the symmetry/hierarchy
of the canonical target skeleton and the assumption that

Figure 2. A set of characters from many different sources are automatically retargeted and registered into our system. The characters
can now perform a number of tests with controllers and parameterized motions in order to insure that the behavior has been properly

transferred: gazing, object manipulation, locomotion, head nodding, and so on.

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Fast, automatic character animation pipelines A. Feng et al.

Figure 3. Final mapping result achieved by our system—left side is given as an example following MOTIONBUILDER naming
convention, and right side is the corresponding joint names in our system. � denotes joint (if exists) is skipped as it is not handled by

our system.

Figure 4. An illustration of various configurations generalized from testing skeletons for certain key joints and joint-chain mapping
using heuristics.

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

A. Feng et al. Fast, automatic character animation pipelines

source skeleton will have similar properties. Here, we
could only show a small portion of this procedure,
Figure 4 and Algorithms 2 and 3 outline part of the search
routines for spine/chest and arm joint-chain, respectively;
however, more complicated cases are also handled. As an
example, if two joints are found sharing the same parent
joint (Spine #), both have the same depth also the same
number of children joints, the algorithm will assume they
are either acromioclavicular or shoulder, and then, deter-
mine left/right using their joint names. Another example is
that based on the depth of shoulder and wrist in the hier-
archy, the heuristic determines if twist joints are present
in-between and estimates the mapping accordingly. In cer-
tain cases, the heuristics may rely on keyword search inside
joint names to determine the best mapping, but switches
to purely hierarchy-based mapping when not successful.
Please refer to our code base (Section 7) for details of the
mapping procedure. Because the mapping is based on the
heuristics, it may not work in all cases. Therefore, charac-
ters with uncommon hierarchy or asymmetrical hierarchy
may break the algorithm. For example, when a character
has extra joint branches such as wings or tails, it would be
difficult for our method to correctly identify the arms and
legs. Another limitation of our heuristics is that it relies
on reasonable joint naming conventions in the skeleton to
identify left and right joints. For example, if the joints in a
skeleton are named in arbitrarily as ‘joint1’, ‘joint2’, and
so forth, our algorithm would not be able to guess the left
or right arms from joint names. For such difficult cases, the
user needs to manually complete the mapping starting with
the partial mapping table generated by the algorithm.

Algorithm 2 Search routine for spine, chest, acromioclav-
icular, and head joints.
1. J base
2. while J J :child./ do
3. if J :num_children./� 2 then
4. MAP(Spine4, J) fchest jointg
5. break
6. else
7. MAP(spine#, J)
8. end if
9. end while

10. if J has 2 symmetrical children then
11. MAP(AC, J.child())
12. end if
13. if J :child./:name./D "Head" then
14. MAP(skellbase, J.child())
15. end if

4. RETARGETING PROCEDURES

The motion retargeting process works by transferring
an example motion set from our canonical skeleton to
a custom skeleton provided by the user. The retarget-
ing process can be separated into two stages. The first
stage is to convert the joint angles encoded in a motion
from our canonical skeleton to the custom skeleton. The

second stage is to enforce various positional constraints
such as foot positions to remove motion artifacts such as
foot sliding.

4.1. Motion Data Transfer

The goal of this stage is to transfer the motion data such
as joint angles from a source skeleton to a target skeleton.
Joint values can be directly copied over for skeletons with
aligned local frames and initial T-poses. However in most
cases, a skeleton provided by the user tends to have dif-
ferent setup and default pose from our canonical skeleton.
Therefore, we first need to align the default pose between
the target skeleton Sd and the source skeleton Sr . This is
performed by recursively rotating each bone segment in
target skeleton to match the global direction of that seg-
ment in source skeleton at default pose (Figure 5 left) so
that the target skeleton is adjusted to have the same default
pose as the source skeleton.

Once the default pose is matched, we address the dis-
crepancy between their local frames by adding suitable
prerotation and post-rotation at each joint in target skele-
ton. Specifically, given a joint bi , with its global rotation
RG
d

and initial local rotation qinit
d

when in default T-pose,
we reorient its local frame as

qd D q
init
d RGd

�1
qg R

G
d (1)

where qt is the actual local rotation after reorientation, and
qg is the standard rotation that complies with the default
global frame. In other words, the original local frame of
bi is reoriented to align with the default canonical global
frame as shown in Figure 5 right, for example, a left 30ı

turn around y-axis in Y-Up global frame simply means
setting q D quat..vec.0; 1; 0/; 30/ without considering
the initial rotation of bi . Because our canonical skeleton
already has all of its joint local frames aligned with the
global frame, this in turn aligns joints in both skeletons into
the same local frames. Therefore, the motion data transfer
can now be carried out trivially by copying the joint rota-
tions to the target skeleton. Similarly, the root translation
pr can also be transferred to the target skeleton by scaling
it according to the length of legs between two skeletons.
The scale factor sr is computed as sr D

lt
ls

, where lt is
the leg length of target skeleton, and ls is that of source
skeleton. For motions created specifically for skeletons
with noncanonical alignments, we reverse the reorientation
process as

qg DR
G
r q

init
r

�1
qr R

G
r

�1
(2)

to make these motions become aligned with default global
frame, which can be directly applied to any skeleton after
realignment in a very straightforward fashion.

4.2. Constraint Enforcement

Once motion data is transferred, they would serve as a
rough approximation to enable the target skeleton with

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Fast, automatic character animation pipelines A. Feng et al.

Algorithm 3 Search routine for arm joint-chain.

Arm_Joint-Chain_Search (sk)

1. J acromioclavicular (AC)
2. while J J :child./ do
3. if J has 5 children then
4. MAP(wrist, J)
5. else if J :num_children./D 0 then
6. J J :parent./

7. MAP(wrist, J)
8. end if
9. end while

10. if not wrist.mapped() then
11. return WRIST_NOT_FOUND
12. end if
13. J1 shoulder ; J2 wrist

14. switch (J2:depth� J1:depth)
15. case 2:
16. uparm shoulder
17. MAP(uparm);MAP(elbow)
18. case 3:
19. MAP(uparm);MAP(elbow)
20. case 4:
21. MAP(uparm);MAP(elbow)

if forearm then MAP(forearm)
22. case 5:
23. MAP(uparm);MAP(elbow);

MAP(forearm)
24. end switch

various behaviors such as locomotion. However, the trans-
ferred motion may not work perfectly on the target skeleton
due to different limb lengths, which may result in foot
sliding artifacts, and so on. This problem could be seen
in many kinds of motions after naive data transfer, but is
mostly visible among locomotion sets. In order to allevi-
ate these artifacts, we apply IK to enforce the foot plant
constraint in the transferred motions. The IK method we
use is based on Jacobian pseudo-inverse, �‚ D JC�xC
.I � JCJ /�z, where JC D JT .JJT /�1 is the pseudo-
inverse of Jacobian matrix J , �x is the offset from current
end effector coordinates to target coordinates xr, and �z
is the desired joint angle increments toward target pose
z D Q‚. The former IK method deforms an input pose to
satisfy the end effector constraint, while maintaining the
target pose z as much as possible. The key advantage of
Jacobian method is that we can solve for all joint angles
at once for the whole skeleton hierarchy instead of com-
puting each joint chain individually. This is useful when
two end effectors share some joints in their joint chains.
For example, when the character is bending down to reach
for a target with both hands, the spine joints need to be
adjusted so both hands can be placed at target positions. It
is more difficult to obtain such a solution if we solve each
chain separately.

Jacobian method is known for its singularity when the
target is out of the reach. In this situation the Jacobian
becomes near singular, and the resulting joint angles
become unstable. To alleviate this problem, we adapt a
damping term �2I so JC D JT .JJT C �2I /�1. The
damping term helps keep the matrix nonsingular even
when the skeleton pose are in a singular configuration. The
damping parameter is set to �D ˛h, where h is the height
of character, and ˛ is scaling factor. In our experiment, we
found that setting ˛ D 0:05 provides a good balance for
accuracy and stability. However, when the target is very far
away, the Jacobian matrix could still be close to singular
even with the damping term. Thus, we also force the target
position to be within reach of the character by projecting
it to a bounding sphere, that is, centered at the skeleton
root and has the radius equals to the length of joint chain
from end effector to root. This effectively avoids the target
position to be too far away to remove the effect of
damping term.

We apply this IK method at each motion frame in the
locomotion sequences to ensure the foot joint is in the
same position during the foot plant stage. If desired,
the same method can be also applied on upper body to
enforce hand placement constraints for gesturing or reach-
ing. Previous methods exist for detecting and fixing foot

Figure 5. Left side shows alignment of a bone segment between two skeletons so that target skeleton matches the pose of source
skeleton. Right side shows reorientation of joint local frames so that they align with the canonical world frame, which enables

straightforward transfer of motion data from source to target skeleton.

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

A. Feng et al. Fast, automatic character animation pipelines

sliding [13,14]. They mostly work by finding a time range
over which the foot plant occurs and enforce the foot
plan during that period. Additional smoothing is usually
required to ensure that the constraint enforcement does not
create popping artifacts in the motion. Through our exper-
iments, we found that it is difficult to robustly detect foot
plant range across different type of motions. Also, without
careful consideration, smoothing may create more motion
artifacts if foot plant is not correctly found. Because we
assume that the original motion is smooth and does not
contain foot sliding, we choose to warp the original motion
trajectory and enforce constraints over the whole trajectory.
Let pGr .t/; p

G
d
.t/ be the global foot position trajectory for

source and target skeleton. We create a new trajectory for
target skeleton by warping the original trajectory using the
following equation:

p0d .0/D p
G
d .0/

p0d .t C ıt/D p
0
d .t/C sr

�
pGr .t C ıt/� p

G
r .t/

�

where p0
d

is the new target trajectory, and sr is the scal-
ing factor based on leg length from the previous section.
The former equation warps the foot trajectory from original
skeleton based on the scale of target skeleton. The method
was proven to work well during our experiments on various
skeletons with different limb lengths and proportions.

5. ONLINE RETARGETING

The former procedures can be applied to process all the
example motions to create a new set of motions for each
new character. However, processing through all example
motions may be time consuming when there are many
unique characters. Online retargeting provides an efficient
way to quickly apply original motions for a new character
on-the-fly. Instead of preprocessing all example motion, it
acts as a animation filter to recompute correct joint angles
for the new character at run-time. This saves the pre-
processing time in exchange for a run-time performance
penalty. We are able to develop the online retargeting
capability in our system by modifying the aforementioned
retargeting procedures.

5.1. Online Motion Data Transfer

We separate the motion data transfer into the stage that only
needs to be carried out once, and the stage that needs to
be carried out during every motion frame. First, we pre-
compute and store the joint mapping information for each
skeleton. Then for each skeleton pair Sr and Sd , we com-
pute their skeleton alignment, and store the alignment rota-
tions that would transform the joint local rotation qr in Sr
to the suitable local rotation qd in Sd . Specifically, because
from Equations (1) and (2),

qd D q
init
d RGd

�1
RGr q

init
r

�1
qr R

G
r

�1
RGd

we can define the alignment rotations as qpre D

qinit
d

RG
d

�1
RGr q

init
r
�1

and qpost DRGr
�1
RG
d

. There-
fore, given a new q0r for Sr , we can transfer the joint
rotation to St via q0

d
D qpre q0r q

post . Because this
motion transfer is very efficient as it involves only two
additional quaternion multiplication for each joint, we can
readily apply it for online motion transfer with very lit-
tle performance penalty. For a simple motion playback,
we apply this formula directly to output a new motion for
the new skeleton. For motion blending, naively transform-
ing the joint rotation for each example motion on the fly
would be expensive if there are many example motions.
So we choose to combine the example motions normally
in motion blending, and only transform the joint rotation
before we output the blending results.

5.2. Online Constraint Enforcement

Constraint enforcements require global foot plant positions
for solving IK. In order to provide this information, we
preprocess each motion and store the local foot position
trajectory plr .t/ D pGr .t/ M

�1
r .t/ for the source skele-

ton, where pGr .t/ is the global foot position, and Mr .t/
is the global base transformation. The global foot trajec-
tory of target skeleton Sd can be computed as pG

d
.t/ D

sr p
G
r .t/ Md .t/ where sr is the scaling factor, and Md .t/

is the base transformation for Sd . We then solve for the
new joint angles with the new trajectory pG

d
.t/ using the

same IK method from previous section. For motion blend-
ing, where we have different foot trajectory from each
example motion, we compute the weighted sum of the foot
positions using the same weights obtained from motion
parameterization and solve IK with the weighted foot posi-
tions. This ensures that the foot plants in the resulting
motions will be intact if there is no foot sliding in the
example motions.

In addition, the online constraint enforcements could be
used to further modify the motions to adapt for the envi-
ronments. For example, when walking on a terrain with
irregular heights, we can adjust the height of foot position
to prevent the foot from penetrating the ground. This can
be performed by annotating the example motions to indi-
cate the time interval tplant where the foot is planted on
the ground, and the time interval tf light where the leg is
in flight. The new foot trajectory can then be warped based
on the ground height and the timing information. The key
is that the foot positions are free to changed during the
flight period, but must be fixed at the correct position dur-
ing the foot plant period. Let ts indicates the time when the
leg start the flight stage and te indicates the end of flight.
Because we have the information of original motions, the
foot positions can be inferred from the motion at both ts

and te . Thus, we know the terrain height hs at ts and can
also predict the terrain height he when the foot is planted at
time te . During the flight stage, we interpolate the terrain
height to offset the constraint position for the moving foot.
Specifically, the new foot position will be, as follows:

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Fast, automatic character animation pipelines A. Feng et al.

pc.t/D p
G
d .t/C h.t/ (3)

h.t/D hs C
t � ts

te � ts
.he � hs/ (4)

The character root position is also offset in a similar
manner in y-axis. We need to consider h.t/ from both
left and right feet, because the new root position would
affect the pose for both legs. We pick the smaller height
min.hlef t .t/; hright .t// of the two feet to adjust the root
position, because it is preferable to bend the leg than to
overstretch it. Because h.t/ for both feet change contin-
uously, the IK constraints for both feet and root position
are also guaranteed not to abruptly jump. Thus, the result-
ing motion after IK adjustment will maintain continuity
without popping.

5.3. Self-collision Handling

Currently, we do not handle collisions caused by the
retargeting process. Therefore, there may be intersections
between limbs and body when the character performs cer-
tain motions or gestures. The main difficulty of run-time
collision handling is to efficiently detect self-intersections.
Although it is not trivial to perform self-intersection detec-
tion in real-time for deformable mesh, we can approxi-
mate the results by defining a smooth bounding volumes
such as capsules for each bone segment. The intersections
between bounding capsules can be found efficiently, and
the offsets to resolve collisions would be smooth. The col-
lision resolution would adjust the joint angles based on the
offsets to prevent bone segments from intersections. We
also need to consider additional issues so the method can
simultaneously maintain the IK constraint and preserve the
continuity for resulting motions after collision resolution.
Designing an effective collision handling method that
address the former issues for our online retargeting process
is left as future work.

5.4. Performance Trade-off

Online retargeting moves some of the computation from
preprocessing to run-time. The performance penalty is an
important factor for the applicability of the method. Our
method does not incur significant overhead and is able
to achieve real-time performance for retargeting tens of
characters on-the-fly. Specifically, the motion transfer stage
requires only two additional quaternion multiplications per
joint, and has very little impact on the overall performance.
On the other hand, the constraint enforcement is more
demanding and requires about 1 ms per update because
it needs to solve for IK. In the future, we would hope
to explore faster methods such as the analytical method
proposed in [25] for solving IK and further improve the
performance.

6. DISCUSSION

6.1. Character Capabilities

The system is able to infuse characters with a number
of capabilities, based on a set of controllers primarily
driven through various procedurally-based algorithms, as
well as through a set of motion examples that are blended
together so as to provide a range of behavior and move-
ment. The gazing [21], head movements [21] and sac-
cades [22,26] have been described in previous work and
are based on controllers that rely upon joint placement
and models of human movement, whereas object manipu-
lation, locomotion and constraints [23], and other primarily
parameterized motion data is based on blending similar
motion clips together, whose methods have been described
elsewhere. Interactive control is primarily carried out
via BML [16], a high-level XML interface that allows
the specification and coordination of various behaviors
together.

It is important to note that low-fidelity motion can be
generated without the need for retargeting or the need to
identify a full humanoid skeleton, such as generated by
[15]. For example, a footstep-based locomotion method
can be used in combination with IK to generate basic char-
acter movement, and various IK methods can be used to
generate reaching and touching actions. However, such
movements would lack the fidelity that can potentially
be achieved by using high-quality motion examples, and
would only be suitable for low-resolution models or char-
acters. By contrast, we offer a pipeline where extremely
high-fidelity motion, such as those generated from motion
capture, can be incorporated onto high-resolution models
and characters.

6.2. Behavior Libraries

We have identified a set of behaviors that enable a
virtual character to perform a large number of common
tasks such as walking (see Figure 6), gazing, gestur-
ing, touching (Figure 7), and so forth. In the authors
opinion, this set represents a minimal, but expressive
set of capabilities for a 3D character for traditional
uses in games, simulations, and other off-line uses.
Behaviors suited for particular environment or specific sit-
uation can be added by including and retargeting anima-
tion clips, or parameterized sets of similar motion clips
parameterized for performances along a range of motion,
such as the punching set in Figure 8. However, the focus
of this work is to quickly and easily generate a 3D charac-
ter that would be useful in a wide variety of circumstances,
thus the authors feel that a critical aspect to this work is the
recognition and inclusion of such behavior sets as part of
such a system. We list the behaviors associated with this
system in Table I later along with some details of their
implementation:

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

A. Feng et al. Fast, automatic character animation pipelines

Figure 6. In the figures previously, we map a set of 20 motion captured locomotion animations to drive an arbitrary character. The
motion captured locomotion data set is of much higher visual quality than can be generated via procedural techniques such as through

the use of IK or footstep models.

Figure 7. A behavior library for a reaching behavior. Thirty two right-handed reaches and retractions are captured from the same start-
ing pose. The reaches are then mirrored to the left hand. Note that the reaching behavior requires the behavior author to manually

annotate the reach phases so as to work properly with grasping, holding, and touching.

Figure 8. A behavior library for punching behavior. Twenty one right-handed punches are captured from the same starting pose. The
punches are then mirrored to the other hand, for a total of 42 motions. Note that this behavior is mostly data-driven, and uses the

general blending capabilities of the animation system.

6.3. Towards a Reusable Motion Database

Over the long term, we envision the construction and appli-
cation of a large number of behavior sets that can be
applied to a virtual character for various purposes. For
example, a behavior set with a large number and type
of fine manipulation tasks could be used for characters
demonstrating the use of hand tools. A behavior set for

crawling, bicycling, or climbing could be used for the
specific environments that use them. Of course, motion
alone is not sufficient for rich interaction in a virtual
environment. For example, behaviors that are not self-
contained and require contact with objects or structures
outside of the character itself would necessitate a addi-
tional control mechanisms in the animation engine. How-
ever, the ability to quickly associate characters with

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Fast, automatic character animation pipelines A. Feng et al.

Table I. Generic behaviors.

Behavior Description Comments

Gazing Look at objects and characters in the scene Procedural
Head movements Nodding, shaking, and other head motions Procedural
Eye saccades Rapid eye movement Procedural
Locomotion Movement and steering around obstacles Data-driven with procedural elements
Object manipulation Touching, reaching, grasping, and pointing to objects Data-driven with procedural elements
Gesturing Different types of gestures used in conversation Data-driven with annotations
Jumping Jump in different directions and lengths Data-driven

Figure 9. Mapping a customized behavior set onto a character. In this case, a set of locomotion animations stylized for
female is mapped onto an arbitrary female character. Note that the choice of behavior sets are chosen by the user at the time

of creation.

motion would itself eliminate a bottleneck in the animation
pipeline.

By providing an automated means to transfer a set of
motions, and potentially, a set of behaviors, onto a char-
acter, we envision the widespread development of behav-
ior libraries separate from a specific particular game or
simulation. As digital artists create libraries of models
for generic use, so too can motion developers capture or
design a library of animations for generic use as well.
Thus, experts in crafting motion can create both stylized or
context-specific motion sets. Game or simulation design-
ers can then choose from a set of motions in the same
way that they can choose from a set of models. By loos-
ening the bond between the motion and the model, we
greatly increase the use and reuse of digital assets. By con-
trast, most motion libraries offered are specific to particular
characters, specific simulation environments, or represent
stand-alone motion clips instead of a broad range of similar
useful multipurpose motion.

6.4. Stylizing Behavior Sets

It is important to note that there are wide variations in
style among behaviors. For example, walking style can
vary greatly between people. Thus, although a locomo-
tion behavior can be automatically infused into a character,
all such characters will end up walking in a similar way.
This limitation can be remedied in part by providing
additional stylized behavior sets (e.g., both male and
female locomotion sets, as in Figure 9). Additional vari-
ations in style, emotion or performance (such as joyful

vs. sad movements) would also require additional behavior
sets. Alternatively, the integration of motion style editing
or modification research such as those found in [27–33]
provide an excellent complement to the incorporation of
behavior sets. Such style editing could be applied to an
entire behavior set, resulting in a wide variation of per-
formance. For behaviors primarily generated through con-
trollers (such as gaze and nodding), certain settings can be
modified to change the style or performance. For example,
the speed/intensity at which the gazing is engaged, or the
number of repletion for head nods.

6.5. Limitations

We introduced a two-step approach, which applies joint
name mapping, motion retargeting, and constraint enforce-
ment to perform online behavior transferring for different
virtual characters. There could be difficult cases where the
two skeletons have very distinct bone lengths. In such sit-
uation, our retargeting may not perform well on the new
character.

Our skeleton guessing algorithm is limited to humanoid
or mostly humanoid forms. It assumes that characters
have human-like structure; two arms, two legs, elbows,
shoulders, knees, and so forth. A skeleton with different
topology, such as the one shown in Figure 10, would cause
incorrect joint mapping results. In order to address this
issue, we develop a user interface shown in Figure 11 as
part of our behavior transfer pipeline to let user adjust
the joint name mapping manually. This semiautomatic
approach ensures that our system can still be applicable to

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

A. Feng et al. Fast, automatic character animation pipelines

Figure 10. The skeleton has additional branches on the spine joints due to the swords on his back, which makes it difficult to deter-
mine the arm chains based on skeletal topology. Our joint name guessing method would fail to find correct joint mapping in this

case.

Figure 11. The user interface for our behavior transfer procedures. Here, the user can manually correct the results from our joint
name guessing method to resolve the issues for certain custom skeletons.

custom skeletons that do not have human-like structures. In
addition, many controller-based behaviors require a mini-
mum configuration of joints in order to be fully-realized.
For example, the gaze control requires a number of joints,
stretching from the lower back to the eyes in order to gaze
while engaging several body parts at once. Also, the behav-
ior sets that rely on single or parameterized motion sets
require a reasonable match between the original motion
subject on which the data was captured and the targeted
skeleton. If the skeleton topology or bone proportions fall
too far outside of normal human limits, the appearance
quality of the behavior will be deteriorated.

Currently, our system does not handle the motion trans-
fers between quadrupedal skeletons. This limitation is
mainly due to the joint mapping stage because our algo-
rithm is based on heuristics. Because quadrupedal animals
may have different set of joint names, such as paws instead
of hands, the existing rules and naming conventions in our
system may not resolve the joint mapping correctly. More-
over, some rules need to be revised to accommodate for

different topological structure because most animals would
have additional tail joints. Thus our method would need
new rules to correctly identify joint branches for arms,
legs, head, and tail. This could be performed by using addi-
tional joint name conventions for tail joints to differentiate
between tail and head. Once the joint name mapping is
handled correctly, the online retargeting can be trivially
extended for quadrupedal skeletons, because the method
does not rely on a specific joint hierarchy.

Facial animation and lip syncing is an important part
of many games and simulations involving animated char-
acters. However, whereas the topology and hierarchy of
skeleton bodies are somewhat standardized, facial topol-
ogy and hierarchies are not. For example, it is reason-
able to assume that a humanoid character has knees, but
unreasonable to assume that the same skeleton has a cheek
joint. The issue is further complicated by the common use
of both blend-shape and joint-based facial animation meth-
ods. As a result, little can be assumed about the face of
an arbitrary humanoid skeleton to allow the incorporation

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Fast, automatic character animation pipelines A. Feng et al.

into an automated pipeline. On the other hand, our system
is able to automatically generate both facial expressions
and lip syncing to characters who have specified a mini-
mal set of Facial Action Coding System (FACS) units and
a small number of mouth shapes used for lip syncing, while
incorporating synthesized speech via a text-to-speech
engine. Such specification requires the manual creation
of those FACS poses and mouth poses. Although such
efforts would not take a professional artist very long to cre-
ate, perhaps requiring only a few hours, these additional
efforts lie outside of the automatic pipeline described in
this paper.

7. CONCLUSION

We have described a pipeline for incorporating high-
quality humanoid assets into a virtual character and quickly
infuse that character with a broad set of behaviors that
are common to many games and simulations. We believe
that by automating the incorporation of models, we are
lowering the barrier to entry for end users and potentially
increasing the number and complexity of simulations that
can be generated.

We offer our entire code base for inspection and eval-
uation under Lesser General Public License licensing at
http://smartbody.ict.usc.edu/.

REFERENCES

1. Feng A, Huang Y, Xu Y, Shapiro A. Automating the
Transfer of a Generic Set of Behaviors onto a Vir-
tual Character. In Motion in Games. Springer Berlin
Heidelberg, 2012; 134–145.

2. Miller C, Arikan O, Fussell D. Frankenrigs: building
character rigs from multiple sources. IEEE Transac-
tions on Visualization and Computer Graphics 2011;
17(8): 1060–1070.

3. Cross-platform game engine with authoring tool, new
feature demo of version 4.0 pre-release. http://www.
unity3d.com.

4. Arikan O, Ikemoto L. Animeeple character animation
tool, 2011.

5. Gleicher M. Retargetting motion to new characters.
In Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH ’98. ACM, New York, NY, USA, 1998;
33–42.

6. Kulpa R, Multon F, Arnaldi B. Morphology-
independent representation of motions for interactive
human-like animation. Computer Graphics Forum,
Eurographics 2005 Special Issue 2005; 24: 343–352.

7. Lee J, Shin SY. A hierarchical approach to interactive
motion editing for human-like figures. In Proceedings
of the 26th Annual Conference on Computer Graph-
ics and Interactive Techniques, SIGGRAPH ’99. ACM
Press/Addison-Wesley Publishing Co., New York, NY,
USA, 1999; 39–48.

8. Monzani JS, Baerlocher P, Boulic R, Thalmann
D. Using an intermediate skeleton and inverse
kinematics for motion retargeting. Computer
Graphics Forum 2000; 19(3). citeseer.nj.nec.com/
monzani00using.html.

9. Ho ESL, Komura T, Tai CL. Spatial relationship pre-
serving character motion adaptation. ACM Transac-
tions on Graphics 2010; 29(4): 33:1–33:8. http://doi.
acm.org/10.1145/1778765.1778770.

10. Zordan VB, Van Der Horst NC. Mapping opti-
cal motion capture data to skeletal motion using
a physical model. In Proceedings of the 2003
ACM SIGGRAPH/Eurographics Symposium on Com-
puter Animation, SCA ’03. Eurographics Associa-
tion, Aire-la-Ville, Switzerland, Switzerland, 2003;
245–250.

11. Shin HJ, Lee J, Shin SY, Gleicher M. Computer pup-
petry: an importance-based approach. ACM Transac-
tions on Graphics 2001; 20(2): 67–94. http://doi.acm.
org/10.1145/502122.502123.

12. Jin Choi K, Seok Ko H. On-line motion retarget-
ting. Journal of Visualization and Computer Animation
1999; 11: 223–235.

13. Glardon P, Boulic R, Thalmann D. Robust on-line
adaptive footplant detection and enforcement for loco-
motion. The Visual Computer 2006; 22(3): 194–209.

14. Kovar L, Schreiner J, Gleicher M. Footskate cleanup
for motion capture editing. In Proceedings of the
ACM SIGGRAPH Symposium on Computer Ani-
mation. ACM Press, San Antonio, Texas, 2002;
97–104.

15. Hecker C, Raabe B, Enslow RW, DeWeese J,
Maynard J, van Prooijen K. Real-time motion retar-
geting to highly varied user-created morphologies.
In ACM SIGGRAPH 2008 Papers, SIGGRAPH ’08.
ACM, New York, NY, USA, 2008; 27:1–27:11. http:
//doi.acm.org/10.1145/1399504.1360626.

16. Kopp S, Krenn B, Marsella S, Marshall A, Pelachaud
C, Pirker H, Thrisson K, Vilhjálmsson H. Towards
a common framework for multimodal generation:
the behavior markup language. In Intelligent Virtual
Agents, Vol. 4133, Gratch J, Young M, Aylett R, Ballin
D, Olivier P (eds), Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, Heidelberg, Germany,
2006; 205–217.

17. Heloir A, Kipp M. EMBR: a realtime animation engine
for interactive embodied agents. In Intelligent Virtual

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

A. Feng et al. Fast, automatic character animation pipelines

Agents, Vol. 5773, Ruttkay Z, Kipp M, Nijholt A,
Vilhjálmsson H (eds), Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, Heidelberg,
Germany, 2009; 393–404.

18. van Welbergen H, Reidsma D, Ruttkay Z, Zwiers
J. Elckerlyc. Journal on Multimodal User Interfaces
2009; 3: 271–284.

19. Cassell J, Vilhjálmsson HH, Bickmore T. Beat: the
behavior expression animation toolkit. In Proceed-
ings of the 28th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH ’01.
ACM, New York, NY, USA, 2001; 477–486. http://doi.
acm.org/10.1145/383259.383315.

20. Niewiadomski R, Bevacqua E, Mancini M, Pelachaud
C. Greta: an interactive expressive ECA system.
In Proceedings of the 8th International Conference
on Autonomous Agents and Multiagent Systems -
Volume 2, AAMAS ’09. International Foundation for
Autonomous Agents and Multiagent Systems, Rich-
land, SC, 2009; 1399–1400. http://dl.acm.org/citation.
cfm?id=1558109.1558314.

21. Thiebaux M, Marsella S, Marshall AN, Kall-
mann M. Smartbody: behavior realization for
embodied conversational agents. In 7th Int’l Joint
Conference on Autonomous Agents and Multiagent
Systems (AAMAS). International Foundation for
Autonomous Agents and Multiagent Systems, 2008;
151–158.

22. Shapiro A. Building a character animation sys-
tem. In Proceedings of the Fourth International
Conference on Motion in Games. Springer, Berlin,
2011; pp. 98–109.

23. Feng AW, Xu Y, Shapiro A. An example-based motion
synthesis technique for locomotion and object manipu-
lation. In I3D. ACM SIGGRAPH Symposium on Inter-
active 3D Graphics, Costa Mesa, CA, March 9–11,
2012; 95–102.

24. Autodesk motionbuilder real-time 3D character
animation software. http://www.autodesk.com/
motionbuilder.

25. Kallmann M. Analytical inverse kinematics with
body posture control. Computer Animation and Virtual
Worlds (CAVW) 2008; 19(2): 79–91.

26. Lee SP, Badler JB, Badler NI. Eyes alive. ACM Trans-
actions on Graphics 2002; 21: 637–644. http://doi.
acm.org/10.1145/566654.566629.

27. Shapiro A, Cao Y, Faloutsos P. Style components.
In Proceedings of Graphics Interface 2006, GI ’06.
Canadian Information Processing Society, Toronto,
Ont., Canada, Canada, 2006; 33–39. http://dl.acm.org/
citation.cfm?id=1143079.1143086.

28. Min J, Liu H, Chai J. Synthesis and editing of person-
alized stylistic human motion. In Proceedings of the

2010 ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games, I3D ’10. ACM, New York, NY,
USA, 2010; 39–46.

29. Neff M, Kim Y. Interactive editing of motion style
using drives and correlations. In Proceedings of the
2009 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, SCA ’09. ACM, New York, NY,
USA, 2009; 103–112.

30. Wang JM, Fleet DJ, Hertzmann A. Multifactor Gaus-
sian process models for style-content separation. In
Proceedings of the 24th International Conference on
Machine Learning, ICML ’07. ACM, New York, NY,
USA, 2007; 975–982.

31. Rose C, Cohen M, Bodenheimer B. Verbs and
adverbs: multidimensional motion interpolation. Com-
puter Graphics and Applications, IEEE 1998; 18(5):
32–40.

32. Amaya K, Bruderlin A, Calvert T. Emotion from
motion. In Proceedings of the Conference on Graph-
ics Interface ’96, GI ’96. Canadian Information Pro-
cessing Society, Toronto, Ont., Canada, Canada, 1996;
222–229.

33. Hsu E, Pulli K, Popović J. Style translation for human
motion. ACM Transactions on Graphics 2005; 24(3):
1082–1089.

SUPPORTING INFORMATION

Supporting information may be found in the online version
of this article.

AUTHORS’ BIOGRAPHIES

Andrew Feng is currently a research
associate in Institute for Creative
Technologies. He received the PhD
and MS degree in computer science
from University of Illinois at Urbana-
Champaign. His research interests
include character animation, mesh
deformation, mesh skinning, and real-

time rendering.

Yazhou Huang received his PhD from
the University of California Merced in
2012, with emphasis on motion cap-
ture based character animation. Dur-
ing this time, he has worked as a
graduate research assistant in Prof.
Marcelo Kallmann’s Graphics Lab,
and in summer 2012, he was a

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

Fast, automatic character animation pipelines A. Feng et al.

visiting research assistant at the USC Institute for
Creative Technologies. His research interests include
motion parametrization, motion planning, human-computer
interaction and robotics. Currently, he is lead R&D engi-
neer at EON Reality, Inc.

Yuyu Xu received her Master degree
in May 2010, from University of
Southern California. She is currently
a research programmer at Institute for
Creative Technologies USC, focusing
on embodied agent animation and sim-
ulation, high level AI that generates
nonverbal behaviors for agents.

Ari Shapiro is a research scientist at
USC Institute for Creative Technolo-
gies where he leads the Character Ani-
mation and Simulation research group.
For several years, he worked on char-
acter animation tools and algorithms at
visual effects and video games com-
panies such as Industrial Light and

Magic, LucasArts, and Rhythm & Hues Studios. He com-
pleted his PhD in computer science at UCLA in 2007 in the
area of computer graphics with a dissertation on charac-
ter animation using motion capture, physics, and machine
learning. He also holds an MS in computer science from
UCLA, and a BA in computer science from the University
of California, Santa Cruz.

Comp. Anim. Virtual Worlds (2013) © 2013 John Wiley & Sons, Ltd.
DOI: 10.1002/cav

