
An Example-Based Motion Synthesis Technique for Locomotion and Object

Manipulation

Andrew W. Feng∗ Yuyu Xu†

Institute for Creative Technologies, University of Southern California

Ari Shapiro‡

Figure 1: A virtual character navigates through the environment, avoids obstacles, and then picks up a ball. Our system utilizes example-
based locomotion, path finding, grasping, and gaze controllers to complete this reaching task in real-time.

Abstract

We synthesize natural-looking locomotion, reaching and grasping
for a virtual character in order to accomplish a wide range of move-
ment and manipulation tasks in real time. Our virtual characters
can move while avoiding obstacles, as well as manipulate arbitrar-
ily shaped objects, regardless of height, location or placement in a
virtual environment. Our characters can touch, reach and grasp ob-
jects while maintaining a high quality appearance. We demonstrate
a system that combines these skills in an interactive setting suitable
for interactive games and simulations.

CR Categories: I.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism—Animation

Keywords: Character Animation, Object Manipulation, Motion
Blending, Virtual Human

1 Introduction

A highly skilled virtual character needs to be able to interact ap-
propriately with its virtual environment. Locomotion has been an
active area of research, and the use of locomotion in animation sys-
tems is commonplace in both academic circles and in commercial
applications, such as video games. Thus skillful walking and run-
ning have become mainstays of simulations of virtual characters.
Without additional skills, however, a character’s interaction with
these virtual worlds is limited to navigation, avoiding large obsta-
cles, and crowd-related behaviors. Many simulations and games
require characters to interact directly with dynamic objects in their
environments, and thus require skills related to reaching, grasping
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and touching. Object manipulation tasks, however, usually require
that the target object be within an arm’s length away of a virtual
character’s body. Such fine movements are usually only present in
simulations that run in smaller environments than are typically used
for locomotion simulation; on a scale of centimeters, rather than
meters. Thus a skillful virtual character who can both locomote as
well as manipulate objects must either have a very accurate locomo-
tion system, one that can position a character precisely to the right
point and orientation to where the manipulation can occur, or have
an object manipulation system that is robust to handle variations in
orientation and positions while still synthesizing a natural-looking
animation result. In addition to arm movement, a skillful virtual
character must be able to touch and grab objects using human-like
hand postures. A convincing animated result must also respect the
objects’ shape and volume, ensuring no penetrations between the
object and the hand. Also, in order for a character to generate
natural-looking motion, the motion must not only appear human-
like by itself, but be appropriate for its context. Thus, any reaching
or grabbing motion should incorporate an attention model; people
touching other objects often look at the object being touched or
grabbed.

We present a highly skilled interactive virtual character by combin-
ing locomotion, path finding, object manipulation and gaze. We
achieve a natural-looking result by using example-based locomo-
tion and reaching techniques at interactive speeds, thus being suit-
able for games and other real-time applications. Our characters are
capable of touching, grasping, holding and placing objects any-
where in the virtual scene at any elevation within their reach that
they are capable of approaching. Note that we attempt to solve
the generic object manipulation problem; reaching, grasping and
touching arbitrary objects in a dynamic space. This is in contrast to
many systems or techniques that are solving specific object manipu-
lation tasks in fixed environments. These other techniques can syn-
thesize motion by replaying motion capture or artistically-driven
animations to manipulate specific objects at fixed locations. By
contrast, we have no knowledge of the location, shape or placement
of the objects. In addition, we preserve the natural look of the syn-
thesized motion through enforcement of constraints that allow the
character to grab objects while simultaneously turning their bodies
in arbitrary directions, or play animations unrelated to the object
manipulation tasks.



2 Related Work

Character Animation Control Controlling a virtual character to
perform various tasks while producing realistic human motions is a
challenging problem. Many previous methods have been proposed
to address the problem using either kinematics control or physics-
based control. Kinematic-based methods make use of existing an-
imation data to produce new animations that satisfy the user con-
straints. One popular method is to segment the example motions
into a set of sub-motions and build a graph structure by computing
suitable transition points between sub-motions [Kovar et al. 2008;
Lee et al. 2002a]. The animation control can then produce the char-
acter motions via suitable graph walk to satisfy user constraints,
such as walking along a path. Further extensions are also devel-
oped by using motion interpolation or parameterized motions to im-
prove the accuracy and interactivity [Safonova and Hodgins 2007;
Heck and Gleicher 2007]. The work by [Safonova et al. 2004] uses
existing motions to construct a low dimensional space, and per-
form optimization in the subspace to produce character motions
with desired behaviors. Physics-based characters can produce
physically-plausible animations based on the results of physical
simulation. Seminal work of Raibert and Hodgins provides a ba-
sic control mechanism to generate locomotions through a simplified
physical model [Raibert and Hodgins 1991] and basic athletic tasks
[Hodgins et al. 1995]. The work in [Yin et al. 2007] also proposes a
physics-based controller that can either be constructed manually or
trained with motion capture data. Such physically-based methods
are neither fast enough, nor accurate enough nor produce natural-
looking results for our purposes. Hybrid kinematic-dynamic meth-
ods have been developed to exploit the advantages of each tech-
nique such as responding to contact [Shapiro et al. 2003], searching
motion capture for proper responses to contact [Zordan et al. 2005]
or tracking motion capture under simulation with kinemtically
driven root joints [Wrotek et al. 2006]. Hybrid approaches can han-
dle high-energy impacts between objects and characters, but aren’t
of principle importance to our system, whose focus is on naviga-
tion, low energy manipulation and attention instead. Alternatively,
[Liu 2009] proposes an optimization based method to generate
physically plausible hand motions. The work in [Jain et al. 2009]
also applies optimization to synthesize physics-based character
motions in dynamic environments. However, optimization-based
methods such as these cannot typically run at interactive speeds.

Some modern game engines, such as Unreal Development Kit
(UDK) [Epic Games 2011] also provide functionalities such as mo-
tion blending and inverse kinematics for motion control. While
using similar building blocks, our system differs from these game
engines in several ways. First, our system build a motion parame-
terization to translate high level control parameters such as speed or
turning rate into suitable blending weights to provide precise mo-
tion control. Game engines usually provide a mechanism for mo-
tion blending, but require user to provide the weights. Moreover,
the IK method adopted in game engines are based on heuristics
such as cyclic-coordinate descent (CCD), which is difficult to ad-
just full body motions. On the other hand, our IK method is based
on Jacobian pseudo inverse, which can solve for full body pose that
satisfies the constraints while adapting to secondary goals such as a
reference pose.

Object Manipulation. Several approaches have been investi-
gated for animating a virtual character to perform various tasks
and object interactions [Yamane et al. 2004; Huang et al. 2010;
Huang et al. 2011; Aydin and Nakajima 1999]. The early work
by [Rijpkema and Girard 1991] propose knowledge-based rules to
procedurally generate grasping hand and finger motions. Yamane et
al.[2004] propose an off-line method that combines motion capture

examples and planning algorithm to generate object manipulation
animations. Their method is able to generate natural looking and
collision free arm motions at the cost of longer processing time.
The method in [Huang et al. 2010] applies motor controllers with
biomechanical rules to coordinate arm, spine, and leg movements
to generate a full-body reaching motion including stepping. The
work by Lv et al. [2011] also utilizes various reaching strategies
from biomechanics. The motion is then generated by optimiza-
tion in reduced dimension. Our method does not handle step and
reach strategies, although it could if a set of set-reaching exam-
ples were included. Yahya and coworkers [1999] present a method
to generate reaching pose from a pose database. Grasping hand
posture is then determined procedurally based on object shapes.
Similar to our goal, the work in [Huang et al. 2011] combines lo-
comotion and upper body planner to control the virtual character
reaching for a distant target. Their method amortizes computation
costs over the whole planned motion to achieve real-time perfor-
mance. Our method separates the motion blending from path plan-
ning, and produces the new motion on the fly in dynamic environ-
ments. The overall goal of our system is to build an integrated
solution for reaching that integrates gaze, reach, and locomotion
planning. In our current implementation, the system can only avoid
obstacles in macro scale through path planning, unlike the ones in
[Shapiro et al. 2008], [Huang et al. 2011], which can handle more
cluttered environments with additional upper body planning. Our
system can be run in real time, thus is more suitable for games and
simulations.

Motion Blending. Motion blending provides a simple yet pow-
erful method to generate realistic human motions by parameter-
izing existing motion data. New motions that satisfy a given pa-
rameter can be synthesized by interpolating motion data with ap-
propriate weights. The main issue in motion blending is to con-
struct an effective parameter space that is both accurate and effi-
cient. Rose et al. [2001] formulates the problem as scatter data
interpolation and uses radial basis function (RBF). To improve the
blending quality of parameter space, they also propose to gener-
ate pseudo examples in regions where the accuracy is poor. Kovar
and Gleicher [2004], on the other hand, apply K-nearest neighbors
method to produce the blending weights using only examples in
close proximity. Their method generates a densely sampled pa-
rameter space by randomly inserting pseudo examples. The work
in [Huang and Kallmann 2010] takes a different perspective on the
problem and solves it with direct optimization. Their method is
able to compute the locally optimal blending weights that satisfy
the spatial constraints in real-time. In our experiments, we found
that the best blending method depends on the context of motions
to be parameterized. For locomotion animation, where the map-
ping from parameter to blend weights is usually linear, it is more
important to ensure the weights will vary smoothly when param-
eter changes. Thus a simple blending scheme based on barycen-
tric coordinates works better to ensure visually pleasing results.
On the other hand, a reaching motion forms a non-linear param-
eter space and requires better precision for grasping. Therefore
methods that construct a dense parameter space are preferred for
accuracy. We do not pursue the motion graph approaches such as
[Kovar et al. 2008] and [Lee et al. 2002a], as they are generally not
suitable for large numbers of character in real time, and can lack ac-
curacy. In addition we chose not to use semi-procedural techniques
such as [Johansen 2009] which perform accurate path following,
but typically cannot achieve the high level of motion quality as can
pure example-based methods.



Order Controller Comments

1 World offset Global orientation and position

2 Idle motion Underlying idle pose

3 Locomotion Overrides idle pose during lo-
comotion phases, ignored dur-
ing idle states

4 Animation Non-locomotive animations,
can encompass entire body
or just upper body during
locomotion.

5 Reach Allows reaching and pointing
using arms

6 Grab Hand control for touching,
grabbing, and picking up
objects

7 Gaze Looking with eyes, head, shoul-
ders and waist

8 Constraint Allows constraints that may
have been violated due to im-
pact of preceding controllers
(i.e. keeping character’s hands
on a table while turning to look
at another object )

Table 1: Controller stack showing flow of character state during
evaluation step.

3 Overview

Our animation system is designed around a hierarchical, controller-
based architecture [Shapiro 2011; Thiebaux et al. 2008]. The state
of the character is manipulated by series of controllers, with the
output of one passed as the input to another. Each controller can
either override, modify or ignore the state of the virtual character.
The controllers know the state of the character during the previ-
ous step, as well as the state of the character during the current
evaluation phase. The controller stack in our system, which con-
trols the state data flow, is listed in Table 1 in the order of exe-
cution. Note that this hierarchy implies that the higher numbered
controllers are given higher priority, since they can override the re-
sults of any lower priority controller. However, the controller stack
simultaneously implements a generalization-specialization hierar-
chy; lower priority controllers typically control a greater number of
body parts, while higher-priority controllers typically control fewer.
For example, the idle motion controller typically produces motion
for the entire body, while the grab and hand controller overrides
motion for the hand and fingers.

Based on the above system, the reach action can be realized by a
series of four different controllers : locomotion, grasp, gaze, and
constraint. The locomotion controller generates the path and the
corresponding animation to help the character navigate toward the
reach target. Once the target is within the grasping distance of
the character, the grasp controller generates a full-body motion to
have the character pick up the target object. The gaze controller is
also augmented to enhance the realism by producing eye and head
movements toward the target. Finally, the constraint controller is
applied to ensure that the motions from the aforementioned stages
are combined together without violating the target goal and other
user specified constraints.

Notation A characters pose P = {τ, Θ} is determined by the
root position τ and a set of joint angles Θ = {θ1, θ2, · · ·}. We

define M i = {Pt0
i, · · ·Ptn

i} as the i-th example motion, where

(Pt)
i is the pose state at time t. We further define (M i(ts → te) =

(P i
ts

→ P i
te

) as the subset of motion M i in the time interval ts to
te. Note that since a motion may be played backward, it is not
necessary that te > ts.

Figure 2: (Left) Reaching and grabbing during sitting. Notice that
the pinky of the right hand did not collide with the target object, and
thus was allowed to blend into the grabbing pose, whereas the other
fingers collided with the target object, and remain at the collision
surface. (Right) Example-based reaching for right side of body. The
blue spheres represent the original examples, while the green dots
are examples interpolated from the original examples. Note that
the character engages his entire body during the reaching motion,
based on the example motions given.

4 Locomotion

4.1 Parameterized Animation

The character locomotion is generated by blending a set of ex-
ample motions. We use 19 different example animations of char-
acter for the motion interpolation. Each example animation M i

contains two walking or running cycles of character either mov-
ing straight, moving sideway, or turning around at various speed.
We also manually segment each example motion M i into a set
of sub-motions {M i(t1 → t2), · · ·M

i(tn−1 → tn)}, where
tk(k = 1 · · ·n) indicates the time stamp at k-th foot placement.
This segmentation prevents the blending of motions over differ-
ent foot placement cycles, and thus reduces the foot sliding arti-
facts at run-time. These animations are then parameterized in three
dimensions using forward velocity vf , turning rate ω, and side-
ways velocity vs. The parameter values can be automatically ex-
tracted from the example motions, such as determining the average
forward velocity of a motion. Thus each motion clip represents
a parameter coordinate p

i = (vf
i, ωi, vs

i) in the three dimen-
sional space, and new motion with novel parameters can be syn-
thesized by interpolating the appropriate motions. There are sev-
eral previous methods for constructing a parameter space for in-
terpolation, including radial basis function [Rose et al. 2001], K-
nearest neighbors [Kovar and Gleicher 2004], or direct optimiza-
tion [Huang and Kallmann 2010]. Since the locomotion parame-
ters such as velocity or turning rates can be linearly mapped to the
blending weights, we choose to construct the parameter space using
tetrahedrons. Given a set of example motions M i(i = 1..ne) we
generate the tetrahedralization V = (T1, T2, · · ·Tv) to connect the

parameter points p
i(i = 1 . . . ne). Here Tj = (pj1 ,pj2 ,pj3 ,pj4)

represents a tetrahedron connecting four example parameter points.
While there exists automatic method for generating the tetrahedral-
ization [Si ], its main application is for geometry reconstruction
from large point sets. Since our locomotion examples consist only



less than 20 parameter points, we choose to manually define the
tetrahedrons.

During run-time, given a desired forward velocity v′
f , turning rate

ω′, and sideways velocity v′
s, we can obtain a new parameter point

p = {vf
′, ω′, vs

′}. We can use the new parameter point p
′ to

search for a tetrahedron Tj in V that encloses p
′. Based on the fact

that only one tetrahedron may contain p
′ and the barycentric coor-

dinates are all positive when p
′ is inside a tetrahedron, we can ob-

tain Tj by computing and testing the barycentric coordinates of p
′

for each tetrahedron in V . Once we obtain Tj , the example motions
(M j1 , M j2 , M j3 , M j4) associated with Tj will be selected for
motion blending. We also compute the blending weights w based
on the barycentric coordinates of p

′ in Tj . A resulting motion M ′

is then a concatenation of {M ′(t1 → t2), · · ·M
′(tk−1 → tk)},

where

M
′
tk→tk+1

=

4∑

n=1

wjnM
jn

tk→tk+1

is the sub-motion blending of example motions
(M j1 , M j2 , M j3 , M j4) from Tj . Figure 3 shows the loco-
motion parameter space and the resulting locomotion produced
through motion blending.

We have found that the above example-based blending method pro-
duces a realistic result, although the quality of the resulting ani-
mation depends highly on the example motions. This locomotion
engine does not use IK, and relies entirely on motion data blending
to produce a smooth animation of the character moving at different
speed and turning rates. This continuous control over movement
parameters therefore connects nicely with the path finding compo-
nents for steering the character.

Figure 3: (Left) Visualization of the example-based locomotion.
Yellow dots on the red axis represent forward motions (walking,
jogging, running, etc.) Yellow dots along the green axis represent
turning motions. Yellow dots along the blue axis represent strafing,
or sideways motions. (Right) Example-based locomotion and path.

4.2 Path Finding

The above example-based locomotion produces natural looking an-
imation based on the input parameters, and a user may change those
parameters in real-time to help the character maneuver around.
However, it is more intuitive for the user to simply provide a target
destination and have the system figure a collision free path toward
the goal in a dynamic environment. This is where a path finding sys-
tem comes in handy to guide the character through obstacles. In our
implementation, we use SteerSuite [Singh et al. 2009] as our steer-
ing system to handle path finding. Given a destination, the steering
system computes a new path toward the target on the fly to avoid
any obstacles along the way and continuously feed the movement
parameters to example-based locomotion. The separation of loco-
motion from path finding simplifies the design and also allows for
the development of each area separately. This enables us to switch
to different steering algorithms without affecting other components.
However, this separation also has a consequence; without knowing
the limits of locomotion capabilities, the path planner may require

movements that are sometimes unrealistically fast, and sometimes
visually unappealing. For example, the path planner might decide
to suddenly switch direction to avoid an obstacle faster than the lo-
comotion system can realistically move the character, thus causing
a discrepancy between the planned path and the actual path. This
has been brought up in [Singh et al. 2010], but has not yet been
fully explored. We also noticed that many path planners are tailored
to handle large scale movement, such as traversing long distances
around large objects, and very few path planners handle intricate
movement in small areas and indoors. Improvement on both the ca-
pability of example-based animation and the steering algorithm to
handle this type of environments would be an interesting direction
for future investigation.

5 Grasp

Our system utilizes an example-based approach for grasping. The
goal is to produce a natural looking motion for the character to pick
up or put down the target object. We separate this task by synthesiz-
ing and combining two different motions – one that moves the arm
near the target, and the other that controls the fingers to enclose the
target object. This separation helps reduce the number of example
motions needed to model different behaviors, such as pick up, put
down, or simply touch the object.

5.1 Arm and Body Motion

The arm motion is generated by interpolating the motion exam-
ples. We use 32 different example motions to allow a character
to point his arm to most objects within arms-length. Each arm uses
16 example motions from four elevations (high, mid-high, mid-low,
low). In practice, motions created for one hand can be mirrored to
the other hand in order to reduce the number of examples needed.
The arm movements for a typical reach action can be separated into
three different stages – move toward the target, hand on the tar-
get, return from the target. Thus in our system, each example mo-
tion M i with time duration te

i will also consist of the same stages.
Specifically, a motion M i starts with the character reaching for the
target at time t = 0, putting his hand on the target at time t = ta

i

and then returning to the rest pose at te
i. We segment an reach mo-

tion into these stages so we can handle the motion blending properly
at each stage.

Similar to the example-based locomotion, we then parameterize the
example motions in a three dimension space, using the apex posi-
tion p of the end effector as the parameter. However, since the hand
position can not be mapped linearly to the blending weights, it re-
quires more care to build an accurate parameter space. A straight-
forward method to improve the accuracy of interpolation is to add
more motion examples, but it would also be impractical to produce
thousands of motions to fill up the parameter space. Therefore we
adapt the method in Kovar et al [Kovar and Gleicher 2004] to build
the parameter space using K-nearest neighbor (KNN) and pseudo-
examples. Pseudo-examples are generated by randomly sampling
the blend weight space to fill out the gap between motion exam-
ples. Once we have a dense set of examples, we build a k-D tree
data structure for fast proximity query at run-time.

The run-time stage produces the reaching motion by blending the
nearby examples. Given a new reach target pr, the k closest exam-
ples (Mn1

, · · ·Mnk
) near pr can be efficiently found from the k-D

tree. An reach motion M̃(0 → ta) that moves the arm to the target
can then be generated using motion blending :

M̃(0 → ta) =

k∑

j=1

wnj
Mnj

(0 → ta
nj )



(A) (B)

Figure 4: Examples of applying inverse kinematics in grasping
motion. With only motion blending, the resulting motion may not
precisely reach the target, as shown in (A). Accurate reaching re-
sults are generated in (B) by combining IK with blended motion.

, where wnj
is defined using the normalized inverse distance be-

tween pr and pnj
in the parameter space. Once the arm has reached

the target, the returning motion M̃ta→te can be synthesized in a
similar manner.

The above motion blending scheme can effectively reproduce a typ-
ical reach motion that start from a rest pose and then back to the
original pose. However, there are cases when the character may
reach for one target, then switch to another without returning to the
original pose. This type of motion is outside of the capabilities of
the original example motions. To generate such motion, we ap-
proximate it with pose interpolation. Specifically, given the current
target position pc and a new target pn, we compute the poses Pc

and Pn respectively using the aforementioned blending method. A
new reach motion is then generated by interpolating Pc and Pn. In
our experiments, a linear interpolation results in passable but not
high quality reaching animation between pose targets. Making use
of the example motions to improve interpolation results is an open
problem, and is left as the future work.

5.2 Full Body Inverse Kinematics

The above method generates precise arm motions that reach the
goal when target position falls within the span of example motions.
For the areas not covered by the example motions, the resulting
motions may not be accurate enough to grasp the target. Therefore
we apply inverse kinematics (IK) based on Jacobian pseudo-inverse
to deform the blended motion for more accurate grasping. Given

a desired end effector coordinate xr and reference joint angles Θ̃
from the previous section, the IK method solves for the joint angles
increment ∆Θ. The resulting pose will have its end effector con-
strained at the target position while satisfying the pose constraint

Θ̃ as much as possible. A Jacobian matrix J is a linear mapping
that transforms the differential changes in joint angles ∆Θ to the
end effector coordinates ∆x. Given current joint configurations
Θc = {θc1, · · · θcn}, the (i, j) entries in matrix J are computed

as partial derivative
δxi(Θc)

δθj
between the j-th component of joint

angles and i-th component of end effector coordinates. Thus the
linearized relationship between ∆Θ and ∆x at Θc is approximated
as ∆x = J(Θc)∆Θ. During each IK update, the joint angle incre-
ments ∆Θ is computed as :

∆Θ = J
+∆x + (I − J

+
J)∆z

where J+ = JT (JJT )−1 is the pseudo-inverse of J , ∆x is the
offset from current end effector coordinates to target coordinates
xr, and ∆z is the desired joint angle increments toward target pose

z = Θ̃.

The above IK method deforms a static input pose to satisfy the end
effector constraint. However, when the input is a motion, natively
applying the IK method at each time step causes the end effector to
move abruptly toward the target. This is because the IK method is
formulated to satisfy a static end effector constraint, and we have
no control over how fast the results will converge to the desired
target coordinates. Moreover, since IK is recomputed at each time
step, we need to ensure the resulting joint angles Θ will not change
abruptly and cause discontinuous motions. As we can see from the
above formulation, the joint angle increments ∆Θ depends linearly
on ∆x and ∆z. Thus if we can limit the magnitude of ∆x and
∆z during each time step, we can avoid a large ∆Θ that causes

discontinuity. For ∆z = ∆Θ̃, we limit the magnitude of ∆Θ̃ to be
less than 5◦ during each update step. This prevents IK to suddenly
change the current pose due to a large difference between current
pose and desired pose. For ∆x, we handle it in a similar manner by
smoothly moving xr ;instead of setting a final target coordinates xr

and applying the same constraint throughout a reaching animation,
we need to infer a time varying xr(t) as the target constraint for

each time step. Given a reach motion M̃(0 → ta), we can obtain

the pose P̃ (ta) at t = ta and the difference ∆p = pr − p̃(ta)
from its end effector p̃(ta) to the desired target pr. We can then
compute xr(ti) at time step ti based on the current time step and
∆p :

xr(ti) = α(ti)∆p + (1 − α(ti))(xr(ti−1) − p̃(ti−1))

, where α(ti) =
ti−ti−1

ta−ti−1
, p̃(t) is the end effector coordinates from

blended motion at t, and xr(t) is the end effector constraint with
xr(0) = p̃(0). The above formula moves the constraint toward pr

as t → ta to produce a reaching animation that satisfy the constraint
exactly at t = ta. Since both the target constraint xr and target

pose z = Θ̃ are changing smoothly, the reaching motion is also
smooth without artifacts. Moreover, the blending weights can vary
at each time step, and therefore the target position can be changed
on the fly even when the reaching is in process. Figure 4 shows the
comparison of resulting poses with and without IK. By deforming
the blended pose with IK, we obtain more accurate hand placement.

5.3 Hand Motion

The motion blending with inverse kinematics enables the character
to point his hand at a precise location in space. For a full grasping
action, the fingers also need to be animated to enclose the target
object. Since target objects can vary in both shapes and sizes, a
character may need to place his hand at different position and ori-
entation to naturally grasp the object. For example, a spherical ob-
ject can be picked up with any hand orientation comfortable for the
character, while a long, narrow object will cause the hand to reori-
ent so that the long axis is parallel to the palm, allowing the fingers
and thumb to close around the axis. Thus it is impractical to create
an example animation for each of them. To simplify the problem,
we divide the object shapes into a few categories, and use heuristic
that determines the orientation of the hand that is needed to grab
that shape.

Hand Orientation We use three types of shapes to represent a
typical object – sphere, box, and capsule. A sphere represents an
object that can be naturally grasped in any orientation, while boxes
and capsules represent objects that need to be grasped in specific

orientations. Let P̃ (ta) be the natural hand pose from blending,
ph(ta) be the hand position, and qh(ta) be the facing direction of

the backhand from P̃ (ta). We devised the the following heuristics
to infer the hand orientation :



Figure 5: Examples of grasping objects with various shapes. Our
system determines hand orientations and finger poses based on ob-
ject shapes and collision detections.

• Sphere : We compute the new hand position as p
′
h(ta) =

c+qh(ta)r, where c is center of the sphere and r is the radius.
This moves the hand outside the sphere while maintaining the
same orientation.

• Box : The new hand orientation q
′
h(ta) = qni

is the normal
vector of the i-th face on the box, where the dot-product qni

•
qh(ta) is the maximum among all six faces. With this new
orientation, we also compute the new hand position p

′
h(ta) =

c+qni
ri to move the hand outside the box, where c is center

of the box and ri is the distance from c to the i-th face.

• Capsule : A capsule represents a thin and long object that
should be picked up from the side. We define qc as the
long axis of capsule, and the new orientation is computed as
q
′
h(ta) = qc×(qh(ta)×qc). Once we have new orientation

q
′
h to align the hand with long axis, the new hand position can

be computed as p
′
h(ta) = c + q

′
hr where c is center of the

capsule and r is its radius.

Since the IK results also depend on hand positions and orientations,
our system also feedbacks the new p

′
h and q

′
h back to the IK as con-

straints to produce a reaching motion with correct hand placement.

Hand Pose Interpolation Once we have reoriented the hand, the
hand motion can be generated to have fingers enclose the target ob-
ject. The hand motion is generated by interpolating between a rest
pose and a pinched pose. We use two poses Pr and Pg to repre-
sent the hand configuration when the hand is relaxed and when the
hand is fully closed. To produce a hand motion, we gradually inter-
polate Pr toward Pg and detect any collisions between each finger
segment and the target object. We treat each finger segment as a
capsule to allow fast collision test. Whenever a collision occurs,
the collided finger segment and its parents are locked and removed
from pose interpolation. This ensure that the hand motion results in
a tight grasp without penetration.

6 Gaze

Gaze is an important aspect for human motion. It provides the intent
from the character and improves the realism of the overall motion.
Although the gaze does not directly affect a grasping motion, it
adds human-like behavior showing the intent and focus when inter-
acting with the object. The synthesize reaching and grabbing mo-
tion produces a more convincing result when appropriately timed
gazing is added to the motion. In our system, we use the method
from [Thiebaux et al. 2009] to synthesize the gaze motion. Given
a target object, the gaze controller procedurally rotates a hierarchy
of joints, including the eyes, neck, shoulders and waist to move
the characters eye beams toward the target. Incorporating the upper
body movements in gaze controller provide a larger coverage of po-
tential target than using only neck and eyes. To integrate the gaze
into grasping motion, we initiate the gaze controller to look at the
object before reaching is started, and maintain the gaze through the

(A) (B) (C)

Figure 6: Constraint controller helps maintain correct poses when
several controllers are working together. A character is picking up
the object in (A), and the action is disrupted by the gaze controller
in (B). By adding a constraint controller, the character is able to
engage in full body gaze while maintaining the same grasping pose.

grasping motion until the object is no longer the target.

The procedural gaze model we use tends to focus exactly on the
target object. While this gives us precise control to point the eye
beams toward the target, it may seem less life-like at times. There-
fore we also generates a saccade motion based on the work by
[Lee et al. 2002b] or [Deng et al. 2005] to augment the gaze con-
troller. The saccade model uses a statistical eye movement model to
generate eye movements over time. Combined with the gaze, it adds
randomness in the eye movements and improves the looking mo-
tion. In the future, we also hope to develop similar example-based
movement models for head and upper body to further increase the
quality of gaze motion.

7 Constraint

From the aforementioned methods, we have a series of controllers
– locomotion, grasping, and gaze – working together to enable the
character to perform the reaching task. Our controller system is
designed as a hierarchy that allows each controller to override and
modify the character state from the previous controller. Thus we
can develop each controller to handle different task and combine
them together to form the character motion. However, since a con-
troller may have effects that replace the effects of earlier one, there
may be conflict between their individual task. For example, the
gaze controller can engage the entire spine during a gaze behavior
when orienting a character upper body towards a gaze target. This
may disrupt the motion from grasping controller since they both af-
fect the spine joints. Since the gaze is evaluated after the grasping,
this causes the hand to move away from the target object and may
produce unnatural pose.

We solve this problem by adding a constraint controller at the end of
hierarchy evaluation. The core component of constraint controller
is the Jacobian-based IK solver from previous section. It takes an
input pose Pr(t), and modify it to ensure certain properties such as
hand position and orientation are satisfied. Similar to IK stage, it
first initializes an output pose Pout(0) = Pr(0). Then during each
update with time increment δt, it solves for new joint angle incre-
ments as ∆Θ(t) = J+∆x(t)+(I−J+J)∆z(t), where x(t) is the
desired hand position and orientation from grasping controller, and
z(t) = Pr(t) − Pout(t − δt) is the desired joint angle increments
that moves the previous output pose Pout(t − δt) toward Pr(t).
The IK method solves for joint angles that enforce the constraint
x(t) with highest priority, while preserved the configuration from
secondary task Pr(t) as much as possible. Therefore the resulting
motion is the combination of a reaching motion with exact hand
placement and a gaze motion that tries to point toward the target
without violating the reaching task. Figure 6 shows the effect of



Figure 7: The plot shows the performance of the system when con-
trolling different number of virtual characters. The horizontal axis
is varying number of characters and vertical axis is the frame rate.
Both reaching and parameterized locomotion are efficient enough
to handle over 20 characters and still maintain the real-time per-
formance.

constraint controller. The original grasp pose is disrupted by a full
body gaze motion and the resulting pose is incorrect and unnatural.
After applying the constraint controller to enforce hand placement,
both gaze and grasp can be executed without conflicts.

8 Experimental Results

We present several examples to demonstrate the capability of our
system. Figure 2 shows the setup of a virtual character for example-
based reaching. The motion examples and pseudo examples define
a feasible reaching space around the character. The character is
able to reach for several different targets around him by utilizing
the entire body. The combination of motion blending and inverse
kinematics produces precise yet natural reaching motions. In Fig-
ure 1, we place several obstacles in the environment and request
the virtual character to reach for a distant target. The locomotion
controller successfully guides the character toward the target and
avoid obstacles along the path before grasping the object. Figure
5 presents another reaching example of a virtual character sitting
in the table. Since the sitting character does not utilize lower body
movements, this example requires a different set of motion exam-
ples. Our system enables the virtual character to manipulate target
objects on the fly, and the character is able to grasp objects with
different shapes with appropriate hand postures.

In Table 2, we summarize the performance timing for each con-
troller stage. For steering, we report the average timing under typ-
ical situations since the performance of steering system may vary
when different steering rules are triggered under certain situations.
The core components of our system – reaching, locomotion and
gaze – consume only less than 2 ms of time during each update.
Figure 7 shows the scalability of the reaching and parameterized
locomotion stages. These analysis shows that our system is able to
handle tens of characters performing both locomotion and manipu-
lation tasks in real-time. 0

0For futher details, our code is available online and can be examined

here: http://sourceforge.net/projects/smartbody/develop/

Stage Timing (ms) Comments

Locomotion 0.21

Steering 0.70 (Average Time)

Reach (Motion Blending) 0.42 ( nk = 4 )

Reach (IK) 0.28

Gaze 0.07

Total 1.68

Table 2: Performance break down for each controller stage.

9 Conclusions and Discussion

In this work, we present an character animation system that inte-
grate different controllers to achieve a reaching task. By utilizing
path planner, motion blending and inverse kinematics, the system
enables a virtual character with skills to maneuver around obstacles
and precisely grasp an target object in space. Our system can re-
spond to dynamic environments to generate a new reaching motion
in real-time and is therefore suitable for interactive applications like
video games.

In the future, we would hope to add collision avoidance in our
grasping controller to handle obstacles during arm movements. We
are also interested in improving the locomotion controller for clut-
tered environments. Specialized motion blending and steering al-
gorithms need to be developed to improve the maneuverability of
example-based locomotion and achieve this goal.

Limitations There are several limitations of our system. First,
since we apply only kinematic-based methods to synthesize new
animations from example motions, the results may not be physi-
cally correct and the quality would depend on the input data. Sec-
ond, we do not handle collision detections during arm movements.
How to adjust the motion blending method to avoid obstacles while
preserving original motions is not a trivial problem, although the
work in [Huang et al. 2011] could be a good starting direction for
research. Finally, our method assumes the target object is small and
can be grasped with single hand. A different set of heuristics and
example motions need to be developed for the virtual character to
handle large objects with both hands.
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