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Abstract. Humanoid 3D models can be easily acquired through various
sources, including online. The use of such models within a game or sim-
ulation environment requires human input and intervention in order to
associate such a model with a relevant set of motions and control mech-
anisms. In this paper, we demonstrate a pipeline where humanoid 3D
models can be incorporated within seconds into an animation system,
and infused with a wide range of capabilities, such as locomotion, object
manipulation, gazing, speech synthesis and lip syncing. We offer a set of
heuristics that can associated arbitrary joint names with canonical ones,
and describe an fast retargeting algorithm that enables us to instill a set
of behaviors onto an arbitrary humanoid skeleton. We believe that such
a system will vastly increase the use of 3D interactive characters due to
the ease that new models can be animated.
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1 Motivation

3D characters are commonly seen in video games, feature films, mobile phone ap-
plications and web sites. The generation of an expressive 3D characters requires
a series of stages to be applied in order to achieve a 3D character performance.
Such stages include the generation of a character model, specifying a skeleton
for that model, deforming the model according to the movement of the skeleton,
applying motion and control algorithms under a framework, and finally instruct-
ing the character to perform. Each of these processes requires a different skillset.
For example, 3D models are generated by digital modelers or through hardware-
based acquisition, while animators create or apply motion to the characters.

Thus, while many high quality assets such as humanoid models or motion
capture data can be readily and inexpensively aquired, the integration of such
assets into a working 3D character is not automated and requires expert inter-
vention. For example, after motion capture data is acquired, it then needs to be
retargetted onto a specific skeleton. An acquired 3D humanoid model needs a
skeleton that satisfies the constraints of a real-time game system, and so forth.
Modern game engines provide a means to visualize and animate a 3D character,
but require assembly by a programmer or game designer. The complexity of an-
imating 3D virtual characters presents an obstacle for the end user, who cannot
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easily control a 3D character without the assistance of specialists, despite the
broad availability of the models, assets and simulation environments.

To address this problem, we present a system that allows the rapid incorpo-
ration of high-fidelity humanoid 3D models into a simulation. Characters intro-
duced to our system are capable of executing a wide range of common human-like
behaviors. Unlike a traditional pipeline, our system requires no intervention from
artists or programmers to incorporate such characters after the assets have been
generated. Our pipeline relies upon two key automated processes:

1) An automated skeleton matching process; skeletons are examined to find
a match between the new skeleton, and one recognized by the simulation. Such
a process looks for similarly named joints, as well as relies on expected topology
of humanoid in order to recognize similarly functioning body parts.

2) A retargeting process that can transfer high quality motion sets onto a
new character without user intervention.

In addition, the virtual character’s capabilities are generally based on two
different sources:

A) A set of controllers that can generate motion by means of rules, learned
models, or procedurally-based methods, and

B) A set of behaviors generated from animation data that can be parameter-
ized across various dimensions, such as running speed for locomotion, or reaching
location for interaction with other 3D objects.

2 Related Work

The first stage of our system utilizes an automated mapping process which uses
a set of heuristics for mapping an arbitrarily named humanoid skeleton onto a
common skeleton with familiar names. To our knowledge, no such algorithm has
been previously published. Many other methods for registering skeletons require
matching names or manual annotations [19]. At the time of this writing, [2]
demonstrates a process by which a skeleton can be automatically registered, but
no technical details are provided regarding underlying algorithms and robust-
ness. In addition, we are aware of systems such as [4] which attempt to automate
the acquisition of motion and models, but have not seen any details regarding
the skeleton rig recognition step.

The second stage of our system utilizes as fast, but offline retargeting system
to generate animations appropriate for a particular skeleton. Retargeting has
been an area of much research in the animation community since [9]’s work
with uses optimization and low-pass filtering to retarget motion. Many other
retargeting algorithms use various approaches: [16] retargets motion by using
angular trajectories, and then solve several body areas, [17] uses a hierarchical
approach to retargeting, [21] uses an intermediate skeleton and IK to handle
retargeting between skeletons with different topologies. [16] retargets motion
through a morphology-independent representaiton by using angular trajectories,
and then solving several body areas. [12] uses spatial relationships for motion
adaptation which can handle many contact-based motion retargeting problems.
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[31] retargets optical data directly onto a skeleton via a dynamics-based method.
[27] uses an online retargeting method via an analytical IK method that prefers
the preservation of end effector values. [6] uses a Jacobian-based IK method for
online retargeting.

Our retargeting system attempts to find footplants in order to better retarget
movement. An online footplant detection and enforcement method is presented in
[8]. By contrast our retargeting methods enforces footplants offline, and doesn’t
modify the length of limbs as in [15] so as to be compatible with many game
and simulation skeleton formats.

Similar to our goals, the work in [10] is focused on retargeting to creatures
with a varying morphology, such as differing number of legs, tails or the absence
of arms. The system described in that work relies heavily on inverse kinematics
in performing online retargeting based on semantic descriptions of movement.
By contrast, we are interested in offline, but relatively fast retargeting of high
quality motions onto humanoid character that cannot be achieved via simple
walk cycles and reaching constraints.

[19] develops a system to automatically assemble a best-fitting rig for a skele-
ton. By contrast, our system assumes that the skeleton and model have been
already bound connected, and focus on the use of such skeleton in a real time
simulation.

The characters in our system can be instructed to perform certain behaviors
using the Behavioral Markup Language (BML) [14]. BML provides a high-level
XML-based description of a set of tasks that can be synchronized with each
other. Many systems have been develop that utilize BML, such as EMBR [11],
Elckerlyc [30], Beat [5] and Greta [23] in addition to our system, SmartBody [28,
25]. However, to our knowledege, no other BML-based systems besides our own
none have implemented extensive character locomotion capabilities or generic
capabilities such as object manipulation [7] which are associated with large sets
of behaviors. Since the BML specification emphasizes speech, head movements
and gestures, most BML-compatible systems emphasize only those features.

Fig. 1. A set of characters from many different sources are automatically retargeted
and registered into our system. The characters can now perform a number of tests with
controllers and parameterized motions in order to insure that the behavior has been
properly transferred: gazing, object manipulation, locomotion, head nodding and so
forth.
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Fig. 2. Mapping a customized behavior set onto a character. In this case, a set of
animations specifying locomotion stylized for a female is mapped onto an arbitrary
female character. Note that the choice of behavior sets are chosen by the user at the
time of creation.

3 Automatic Skeleton Joint Mapping

One of the challenges of using an off-the-shelf character model is that the user
has to first set up a joint mapping table to comply with the skeletal system and
motion data used for the target system/application. This step is critical for many
motion parameterization procedures like retargeting, and although being a trivial
task, it is commonly done by hand. In this submission we propose a heuristic-
based automatic skeleton joint mapping. Our method utilizes the skeleton hier-
archy structure and symmetries, combined with keyword searching to help deter-
mine certain key joints in the hierarchy. We have successfully validated our au-
tomatic mapping method using character skeletons from various popular sources
(www.mixamo.com, www.rocketbox-libraries.com, www.turbosquid.com, www.axyz-
design.com/, 3DSMax, MotionBuilder).

Our goal is to map a list of arbitrary joints from any user-defined biped
skeleton to the set of canonical joints on the standard/target skeleton inside
our character animation system. Fig 3 shows the final mapping result to be
achieved from left side mapped to the right side. Left side as an example follows
MotionBuilder[1] standard skeleton joint naming convention, and right side is
the corresponding names in our SmartBody standard skeleton. We do not intend
to map all the joints, and in many cases not all joints can be mapped easily.
We want mapping only for a basic set of joints that would enable most of our
controllers to drive user-defined characters for behaviors like gaze, reaching and
locomotion.

The mapping is largely based on heuristics and is specifically adapted to our
system. The first step is to find the character’s base joint. We only consider
the situation where the input skeleton is biped, in which case the base is usu-
ally defined as the parent of spine and two legs. Fig 4-1 generalizes some of the
variations found in our testing skeletons, and the routine is partially outlined in
Algorithm 1. Once the base joint is found, our algorithm tries to map the remain-
ing key joints. Here we could only show a small portion of this procedure, Fig 4
and Algorithm 2 and 3 outline part of the search routines for spine/chest and arm
joint-chain respectively, however more complicated cases are also handled. For
example, based on the depth of shoulder and wrist in the hierarchy, the heuristic
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Fig. 3. Final mapping result achieved by our system, left side is given as an example
following MotionBuilder naming convention, right side is the corresponding joint names
in our system. ∗ denotes joint (if exists) is skipped as it’s not handled by our system.

determines if twist joints are present in-between and estimates the mapping ac-
cordingly. In certain cases the heuristics may rely on keyword search inside joint
names to determine the best mapping, but switches to purely hierarchy-based
mapping when not successful. Please refer to our code base 5.5 for details of
the mapping procedure. Characters with uncommon hierarchy/joint-names may
break the heuristics, such as with the presence of extra joints (wings, tails, etc)
or asymmetrical hierarchy.

4 Retargeting

The motion retargeting process works by transferring an example motion set
from our canonical skeleton to a custom skeleton provided by the user. The
retargeting process can be separated into two stages. The first stage is to convert
the joint angles encoded in a motion from our canonical skeleton to the custom
skeleton. The second stage is to enforce various positional constraints such as
foot positions to remove motion artifacts such as foot sliding.
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Fig. 4. An illustration of various configurations generalized from testing skeletons for
certain key joints and joint-chain mapping using heuristics.

Algorithm 1 Search routine for base
joint.

1. while i ≤ max search depth do

2. J ← skeleton.joint(i)
3. switch (J.num children())
4. case 2:
5. if J has 2 symmetrical children then

6. return MAP(base, J)
7. end if

8. case 3:
9. if J has 2 symmetrical children then

10. return MAP(base, J); MAP(spine)
11. end if

12. end switch

13. end while

14. return BASE NOT FOUND

Algorithm 2 Search routine for spine,
chest, acromioclavicular and head joints.

1. J ← base
2. while J ← J.child(0) do

3. if J.num children() ≥ 2 then

4. MAP(Spine4, J) {chest joint}
5. break

6. else

7. MAP(spine#, J)
8. end if

9. end while

10. if J has 2 symmetrical children then

11. MAP(AC, J.child())
12. end if

13. if J.child().name() = ”Head” then

14. MAP(skellbase, J.child())
15. end if

4.1 Motion Data Transfer

The goal of this stage is to transfer the motion data such as joint angles from a
source skeleton to a target skeleton. For skeletons with local frames and initial
poses, this process is trivial – we copy over the joint values. However, in most
cases, a skeleton provided by the user tends to have different setup and default
pose from our canonical skeleton. Therefore, we first need to align the default
pose between the target skeleton and our canonical skeleton. This is done by
recursively rotating each bone segment in target skeleton to match the global
direction of that segment in source skeleton at default pose. As shown in Fig 5
left, this process adjust the target skeleton to have the same default pose as the
source skeleton.

Once the default pose is matched between the two skeletons, we address the
discrepancy between their local frames. This is done by adding suitable pre-
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Algorithm 3 Search routine for arm joint-chain.

1. J ← acromioclavicular (AC)
2. while J ← J.child() do

3. if J has 5 children then

4. MAP(wrist, J)
5. else if J.num children() = 0 then

6. J ← J.parent()
7. MAP(wrist, J)
8. end if

9. end while

10. if not wrist.mapped() then

11. return WRIST NOT FOUND
12. end if

13. J1 ← shoulder ; J2 ← wrist

14. switch (J2.depth− J1.depth)
15. case 2:
16. uparm ← shoulder
17. MAP(uparm);MAP(elbow)
18. case 3:
19. MAP(uparm);MAP(elbow)
20. case 4:
21. MAP(uparm);MAP(elbow)

if forearm then MAP(forearm)
22. case 5:
23. MAP(uparm);MAP(elbow);

MAP(forearm)
24. end switch

Fig. 5. Left side shows alignment of a bone segment between two skeletons so that
target skeleton matches the pose of source skeleton. Right side shows re-orientation
of joint local frames so that they align with the canonical world frame, which enables
straightforward transfer of motion data from source to target skeleton.

rotation and post-rotation at each joint in target skeleton. Specifically, given
a joint bi, with its global rotation RG and initial local rotation qinit when in

default T-pose, we re-orient its local frame as q′ = qinit RG−1 q RG , where q′ is
the actual local rotation after re-orientation, and q is the standard rotation that
complies with the default global frame. In other words, the original local frame
of bi is re-oriented to align with the default canonical global frame as shown
in Fig 5 right, e.g. a left 30◦ turn around Y-axis in Y-Up global frame simply
means setting q = Quat((V ec(0, 1, 0), 30) without considering the initial rotation
of bi. Since our canonical skeleton has all of its joint local frames aligned with
the canonical global frame as well, this in turn aligns joints in both skeletons
into the same local frames. Therefore the motion data transfer can now be done
trivially by copying the joint rotations to the target skeleton. Similarly, the
root translation pr can also be transferred to the target skeleton by scaling
it according to the length of legs between two skeletons. The scale factor sr is
computed as sr = lt

ls
, where lt is the leg length of target skeleton and ls is that of

source skeleton. For motions created specifically for skeletons with non-canonical

alignments, we reverse the re-orientation process as q = RG qinit
−1

q′ RG−1

to make these motions become aligned with default global frame, which can
be directly applied to any skeleton after realignment in a very straightforward
fashion.
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4.2 Constraint Enforcement

Once motion data is transferred, they would serve as a rough approximation to
enable the target skeleton with various behaviors such as locomotion. However,
the transferred motion may not work perfectly on the target skeleton due to
different limb lengths. The most significant artifacts from a naive motion trans-
ferred is the foot sliding artifact. This problem happens in all kinds of motions
but are mostly visible in a locomotion set.

In order to alleviate these artifacts, we apply inverse kinematics to enforce the
foot plant constraint in the transferred motions. The inverse kinematic method
we use is based on Jacobian pseudo-inverse,

∆Θ = J+∆x+ (I − J+J)∆z

where J+ = JT (JJT )−1 is the pseudo-inverse of Jacobian matrix J , ∆x is the
offset from current end effector coordinates to target coordinates xr, and ∆z

is the desired joint angle increments toward target pose z = Θ̃. The above
IK method deforms an input pose to satisfy the end effector constraint, where
maintaining the target pose z as much as possible. We apply this IK method at
each motion frame to ensure the foot joint is in the same position during foot
plant stage.

Several methods exist for detecting and fixing foot sliding. They mostly work
by finding a time range over which the foot plant occurs, and enforce the foot
plan during that period. Additional smoothing is usually required to ensure that
the constraint enforcement does not create a popping artifacts in the motion.
Through our experiments, we found that it is difficult to robustly detect foot
plant range across different type of motions. Also, without careful consideration,
smoothing may create more motion artifacts if foot plant is not correctly found.
Since we assume that the original motion is smooth and does not contain foot
sliding, we choose to warp the original motion trajectory and enforce constraints
over the whole trajectory.

Let ps(t), pd(t) be the foot position trajectory for source and target skeleton.
We create a new trajectory for target skeleton by waring the original trajectory
using the following equation,

p′d(0) = pd(0)

p′d(t+ δt) = p′d(t) + sr(ps(t+ δt)− ps(t))

, where p′d is the new target trajectory, and sr is the scale factor based on leg
length from the previous section. The above equation warps the foot trajectory
from original skeleton based on the scale of target skeleton. During our experi-
ment, we found this strategy works well for various skeletons with different limb
proportions and lengths. It is also more robust for different motion styles and
does not require additional smoothing.
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5 Discussion

5.1 Character Capabilities

The system is able to infuse characters with a number of capabilities, based
on a set of controllers primarily driven through various procedurally-based al-
gorithms, as well as through a set of motion examples that are blended to-
gether so as to provide a range of behavior and movement. The gazing [28], head
movements [28] and saccades [18, 25] have been described in previous work and
are based on controllers that rely upon joint placement and models of human
movement, while object manipulation, locomotion and constraints [7] and other
primarily parameterized motion data is based on blending similar motion clips
together, whose methods have been described elsewhere. Interactive control is
primarily done via the Behavioral Markup Language (BML) [14], a high level
XML interface that allows the specification and coordination of various behaviors
together.

It is important to note that low-fidelity motion can be generated without
the need for retargeting or the need to identify a full humanoid skeleton, such as
generated by [10]. For example, a footstep-based locomotion method can be used
in combination with IK to generate basic character movement, and various IK
methods can be used to generate reaching and touching actions. However, such
movements would lack the fidelity that can potentially be achieved by using high-
quality motion examples, and would only be suitable for low-resolution models or
characters. By contrast, we offer a pipeline where extremely high-fidelity motion,
such as those generated from motion capture, can be incorporated onto high-
resolution models and characters.

5.2 Behavior Libraries

We have identified a set of behaviors that enable a virtual character to perform a
large number of common tasks such as walking, gazing, gesturing, touching and
so forth. In the authors opinion, this set represents a minimal, but expressive
set of capabilities for a 3D character for traditional uses in games, simulations
and other offline uses. Behaviors suited for particular environment or specific
situation can be added by including and retargeting animation clips, or parame-
terized sets of similar motion clips parameterized for performances along a range
of motion. However, the focus of this work is to quickly and easily generate a
3D character that would be useful in a wide variety of circumstances, thus the
authors feel that a critical aspect to this work is the recognition and inclusion
of such behavior sets as part of such a system.

By providing an automated means to transfer a set of motions, and poten-
tially, a set of behaviors, onto a character, we envision the widespread develop-
ment of behavior libraries separate from a specific particular game or simulation.
As digital artists create libraries of models for generic use, so too can motion de-
velopers capture or design a library of animations for generic use as well. Thus,
experts in crafting motion can create both stylized or context-specific motion
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sets. Game or simulation designers can then choose from a set of motions in the
same way that they can choose from a set of models. By loosening the bond
between the motion and the model, we greatly increase the use and reuse of
digital assets. By contrast, most motion libraries offered are specific to particu-
lar characters, specific simulation environments, or represent standalone motion
clips instead of a broad range of similar useful multi-purpose motion.

5.3 Stylizing Behavior Sets

It is important to note that there are wide variations in style among behav-
iors. For example, walking style can vary greatly between people. Thus, while
a locomotion behavior can be automatically infused into a character, all such
characters will end up walking in a similar way. This limitation can be remedied
in part by providing additional stylized behavior sets. For example, providing
both male and female locomotion sets. Additional variations in style, emotion
or performance,. such as joyful versus sad movements would also require ad-
ditional behavior sets. Alternatively, the integration of motion style editing or
modification research such as those found in [26], [20], [22], [29], [24], [3], [13]
to be an excellent complement to the incorporation of behavior sets. Such style
editing could be applied to an entire behavior set, resulting in a wide variation
of performance.

For behaviors primarily generated through controllers and not through mo-
tion clips, such as gaze and nodding, there are settings that can modify slightly
the style or performance of such behaviors.For example, the speed or intensity
at which the gazing is engaged, or the number or repletion of head nods.

5.4 Limitations

Our skeleton guessing algorithm is limited to humanoid or mostly humanoid
forms. It assumes that characters have human-like structure; two arms, two
legs, elbows, shoulders, knees and so forth. In addition, many controller-based
behaviors require a minimum configuration of joints in order to be fully-realized.
For example, the gaze control requires a number of joints, stretching from the
lower back to the eyes in order to gaze while engaging several body parts at
once. Also, the behavior sets that rely on single or parameterized motion sets
require a reasonable match between the original motion subject on which the
data was captured, and the targeted skeleton. If the skeleton topology or bone
proportions fall too far outside of normal human limits, the appearance quality
of the behavior will be deteriorated.

Facial animation and lip syncing is an important part of many games and
simulations involving animated characters. However, while the topology and hi-
erarchy of skeleton bodies are somewhat standardized, facial topology and hierar-
chies are not. For example, it is reasonable to assume that a humanoid character
has knees, but unreasonable to assume that the same skeleton has a cheek joint.
The issue is further complicated by the common use of both blend-shape and
joint-based facial animation methods. As a result, little can be assumed about



Automating the Transfer... XI

the face of an arbitrary humanoid skeleton to allow the incorporation into an
automated pipeline. On the other hand, our system is able to automatically
generate both facial expressions and lip syncing to characters who have speci-
fied a minimal set of FACS units and a small number of mouth shapes used for
lip syncing, while incorporating synthesized speech via a text-to-speech engine.
Such specification requires the manual creation of those FACS poses and mouth
poses. While such efforts would not take a professional artist very long to create,
perhaps requiring only a few hours, these additional efforts lie outside of the
automatic pipeline described in this paper.

5.5 Conclusion

We have described a pipeline for incorporating high-quality humanoid assets
into a virtual character and quickly infuse that character with a broad set of
behaviors that are common to many games and simulations. We believe that by
automating the incorporation of models, we are lowering the barrier to entry for
end users and potentially increasing the number and complexity of simulations
that can be generated.

We offer our entire code base for inspection and evaluation under LPGL
licensing at http://smartbody.ict.usc.edu/. Please see our accompanying video
at: http://people.ict.usc.edu/~shapiro/mig12/paper9/

Fig. 6. In the figures above, we map a set of 20 motion captured locomotion animations
to drive an arbitrary character. The motion captured locomotion data set is of much
higher visual quality than can be generated via procedural techniques such as through
the use of IK or footstep models.
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