
Demonstrating and Testing the BML
Compliance of BML Realizers

Herwin van Welbergen1, Yuyu Xu2, Marcus Thiebaux2, Wei-Wen Feng2,
Jingqiao Fu2, Dennis Reidsma1, and Ari Shapiro2

1 Human Media Interaction, University of Twente
{h.vanwelbergen@utwente.nl,d.reidsma}@utwente.nl

2 Institute for Creative Technologies, University of Southern California
shapiro@ict.usc.edu

Abstract. BML realizers are complex software modules that implement
a standardized interface –the BML specification language– to steer the
behavior of a virtual human. We aim to promote and test the compli-
ance of realizers that implement this interface. To this end we contribute
a corpus of example BML scripts and a tool called RealizerTester that
can be used to formally test and maintain adherence of realizers to the
BML standard. The standardized interface of realizers allowed us to im-
plement RealizerTester as an automatic testing framework that can test
any realizer. RealizerTester can 1) help in maintaining the stability and
extensibility that is crucial for realizers and 2) contribute to the formal-
ization of the emerging BML standard, both by providing test scripts and
a formal description of their constraints and by identifying and resolv-
ing execution inconsistencies between realizers. We illustrate the testing
practices used in the development of two realizers and demonstrate how
RealizerTester is integrated with these practices. The scripts in the ex-
ample corpus were executed on both realizers. This resulted in a video
corpus that demonstrates the semantic equivalences and differences in
execution of BML scripts by the two realizers.

1 Introduction

The SAIBA framework [5, 9] has standardized the architecture of virtual human
applications with the aim of making reuse of their software components possi-
ble. The SAIBA framework proposes a modular ‘planning pipeline’ for real-time
multimodal motor behavior of virtual humans, with standardized interfaces (us-
ing representation languages) between the modules in the pipeline. One of the
components in this pipeline is the realizer. A realizer provides an interface to
steer the motor behavior of a virtual human: a description of behavior in the
Behavior Markup Language (BML) goes ‘in’, feedback comes ‘out’.

Several realizers have been implemented [8, 6, 4, 2, 10]. If SAIBA’s goal of soft-
ware reuse is achieved, it will be possible to use such realizers interchangeably
with the same BML input. We are interested in measuring and promoting this
compatibility between realizers and to provide tools to formally test and main-
tain adherence to BML standard. To this end, we provide a growing test set of



BML test cases, a corpus of BML scripts and video material of their realization
in different (so far, two) realizers: SmartBody [8] and Elckerlyc [10].

By directly comparing BML realizers, we can better determine changes to
the BML specification that are necessary due to overly narrow or broad spec-
ifications. Overly broad specifications can be detected when realizers provide
BML compliant, but semantically very different results. Overly narrow spec-
ifications indicate that a specification is not expressive enough, they can be
detected when several Realizers implement the same (semantic) functionality,
yet require Realizer specific proprietary BML extensions to implement (part of)
this functionality.

Since each realizer necessarily implements the same interface, an automatic
testing framework can be designed that tests the adherence to the BML/feedback
semantics for any realizer. We contribute our testing framework RealizerTester3,
which provides exactly this functionality.

2 On BML Versions and Script Creation

Currently, there are two version of the BML specification: a first draft specified
after the BML workshop in Vienna in November 2006 (the Vienna draft) and
the current draft of BML version 1.0 (draft 1.0). Draft 1.0 is not backward
compatible with the Vienna draft. Currently Elckerlyc implements draft 1.0,
and SmartBody implements the Vienna draft. It is likely that new versions of
BML will be developed4 and that not all realizers will adapt to these new versions
at the same pace. However, test scripts can be constructed that are semantically
equivalent (that is, execute behavior that adheres to the same form and timing
constraints) for most, if not all, BML behaviors in different versions of BML.
This implies that the same test case (albeit not test script) can be used to test
realizers that implement different versions of BML.

We aim to construct a test set that contains such semantically equivalent
test cases for all BML versions. These tests provides a ‘safety net’ for migrating
a realizer from a previous BML version to the next; the tests that worked for
a realizer in the previous version should not break in their updated syntax in a
next version of BML.

The process of converting the old tests to a new BML version also helps in the
definition of the standard. It can highlight certain cases in which expressivity is
lost where this might not be intended. That is: if something can be expressed in
a previous version of BML which we cannot express in the new version of BML
and this loss of expressivity was not explicitly intended in the new BML version,
then their might be something ‘wrong’ in the definition of the new version.

Most of our current test scripts were originally designed for draft 1.0 and later
converted to equivalent Vienna draft scripts. During this conversion process, we

3 RealizerTester is released under the MIT license at
http://sourceforge.net/projects/realizertester/.

4 The BML workshop at this IVA aims to finalize BML 1.0



have encountered several cases that demonstrate the enhanced expressivity of
the newer draft 1.0. For example:

– In the Vienna draft it was impossible to specify a realizer-independent pos-
ture behavior; draft 1.0 provides the specification of some default lexicalized
postures.

– Draft 1.0 provides the specification of a modality (e.g. eyes, neck, torso) in
gaze behaviors. The Vienna draft does not allow this. Therefore, SmartBody
currently needs to use a custom extension to specify the modality of its gaze
behavior.

A small set of scripts was converted from a Vienna draft specification to a draft
1.0 specification. So far we have not encountered any cases in which expressivity
of the Vienna draft was lost in draft 1.0.

3 A Corpus of Test Cases and Videos

We provide a growing corpus of BML scripts for the purpose of visual compari-
son between the execution of a BML script by the different realizers. A matching
video corpus illustrates how these scripts are executed in both SmartBody and
Elckerlyc. The corpus of BML scripts (and matching video) provides examples of
both short monologues and of the execution of isolated behaviors. The compan-
ion video and Fig. 1 compare the execution of some of these scripts in SmartBody
and Elckerlyc. Here we discuss some preliminary observations on the comparison
of such videos.

Script are included for most types of BML behavior. In the scripts used so far,
the speech, gaze, head and pointing (part of gesture) behaviors look similar
in Elckerlyc and SmartBody. A comparison of face behaviors, specified through
Ekmans FACS [3] gives mixed results, as illustrated in the video. The posture

behavior could not be compared in a meaningful manner, because the Vienna
BML draft does not provide a realizer independent way to specify posture. The
locomotion behavior is currently not implemented in Elckerlyc and is therefore
omitted from the visual comparison corpus for now.

When designing short monologues for the visual comparison corpus, it be-
came clear that existing demonstration scripts of both SmartBody and Elckerlyc
rely heavily upon custom behavior elements. One reason for this is the lack of
expressivity of the BML standard and specifically the lack of expressivity in
the specification of iconic and metaphoric gestures. We recommend, at the very
least, to extend the lexicalized set of gestures that can be specified in BML to
include more non domain specific gestures. The set of gestures that is already
implemented through extensions by current realizers could serve as an inspira-
tion for this. Another reason for the use of custom BML elements is that so far
there was no real need for BML compliance of realizers. Some BML elements
that are currently implemented using one or more custom BML extensions in
Elckerlyc and SmartBody could be implemented in standard BML. This testing
and comparison corpus building effort serves as a driving force for this. Already



some new core BML behaviors were implemented in both realizers to achieve
better BML compliance.

We have created a test corpus containing 19 test scripts in BML draft 1.0, and
corresponding test cases that check, e.g., the adherence to the time constraints
specified in the scripts. We are currently in the process of converting the test
scripts to the Vienna BML draft.

4 Automatic Software Testing of Realizers

Realizers are complex software components. They often form the backbone of
several virtual human applications of a research group. Therefore, the stability
and extensibility of realizers is crucial. So far, the testing of most of these realizers
was limited to manual, time consuming inspections of the execution of a selected
set of BML scripts [1]. Automatic testing can be used to detect errors in realizers
and provide a ‘safety net’ that can, to some extent, ensure that extensions or
design cleanups did not introduce a failure in existing functionality. Since the
automatic tests do not require manual intervention, they can be run often which
ensures that errors are detected early, which makes it easier to fix them.

RealizerTester provides an automatic testing framework for Realizers. We
illustrate the use of RealizerTester by describing how it was integrated in the
software development process of the Elckerlyc and SmartBody realizers and dis-
cuss how it can contribute to the emerging BML standard.

A Behavior Planner communicates with a realizer by sending BML blocks
with intended behavior to it and by capturing the feedback provided by the
realizer. A BML block defines the form and relative timing (using constraints
on its sync points, see also Fig.2) of the behavior that a realizer should display
on the embodiment of a virtual human. The realizer is expected to provide the
Behavior Planner with feedback on the current state of the BML blocks it is
executing: it notifies the Behavior Planner of the start and stop of each BML
block (performance start/stop feedback) and on the passing of sync points for
each behavior in the block (sync-point progress feedback). Execution failures are
sent using warning and exception feedback.

RealizerTester acts as a Behavior Planner: it sends BML blocks to the Re-
alizer Under Test (RUT)5 and verifies if the feedback received from the RUT
satisfies the assertions implied by the BML blocks. This allows automatic testing
of the following properties:

1. Message Flow and Behavior Execution: RealizerTester can verify if the per-
formance start/stop of each BML block and sync-point progress feedback
messages of each behavior was received in the correct order and only once.
This implicitly provides some information on whether or not the behaviors
were actually executed.

2. Time Constraint Adherence: a BML block defines several time constraints
upon its behaviors. It can require that a sync point in one behavior occurs

5 after System Under Test used in [7]



Fig. 1. Execution of some BML behaviors in Elckerlyc (left) and SmartBody(right).
From top to bottom: AU 1 (inner eyebrow raise), AU 6 (cheek raiser and lid compres-
sor), gaze, point.



��������	

��������	���
��

����������	��	��������
��

������������������

������ �������	���
!�����	���������� 
��

�����"��#���$�����������%���%�����%&

����"��

������� �

������

�
������

����������������

����������

Fig. 2. An example BML script and the sync points of a BML behavior

simultaneously with a sync point in another behavior, or that a certain sync
points should occur before or after another one. These constraints can be
tested by inspecting the sync-point progress feedback.

3. Error Handling : The error handling of a realizer can be tested by inspecting
its warning and exception feedback. For example, RealizerTester can send
BML blocks to the realizer that are invalid or impossible to schedule and
then check if the realizer generated the appropriate exception feedback.

4.1 Test Architecture

Each automatic test consists of four phases [7]:

1. Fixture setup: The Fixture contains the RUT and everything it depends on
to run. During Fixture set up, the RUT is created and put in a state suitable
for testing. The necessary functionality to keep track of the feedback sent by
the RUT is also hooked up.

2. Exercise the RUT : Send BML block(s) to the RUT.
3. Result verification: Verify the feedback received from the RUT.
4. Fixture teardown: Clean up the fixture.

���
�����	��
������


�������

�����	������

���

�������

���

�������
�������

�����

��������

�������
������

�������

 �����


������!


���������

!�����
�����

�����	��


������
�����

�����	��
"�����

������!

���������

#�����
$���������

����
�������
���%���

�������

�����	��

������

Fig. 3. Testing Architecture

Phase 1 and 4 are realizer specific, phase 2 and 3 are generic. The Generic (re-
alizer independent) Testing Framework contains a set of tests and is responsible
for exercising these tests and verifying their results. The Generic Testing Frame-
work exercises the RUT by communicating with it through a RealizerPort. The
RealizerPort is a minimal interface for a realizer.



A Realizer Specific Testing Framework is responsible for setting up and tear-
ing down the Fixture before and after each test case. During the setup phase,
this framework creates a realizer specific implementation of the RealizerPort
and connects it to the RUT. RealizerTester is implemented using the JUnit6

unit testing framework. Since the Fixture setup and teardown is the same for
each test, they are implemented using setup and teardown functions that are
called automatically before and after each test respectively.7 Fig. 3 shows our
architecture setup.

4.2 Authoring Test Cases

Test cases are typically set up as follows:

1. Send one or more BML blocks to the RUT, capture all feedback.
2. Wait until the RUT has finished executing all blocks.
3. Verify some assertions on the received feedback.

RealizerTester provides several Test Utility Methods and Custom Assertions [7]
to help a test author with this. In the test setup phase, the RUT is coupled to
a feedback handler that stores all feedback messages. Most of the Test Utility
Methods and Custom Assertions act upon this feedback messages storage. The
Custom Assertions in RealizerTester verify various commonly required asser-
tions on the received feedback and provide meaningful error messages if these
assertions fail.

Fig. 4 shows an example test case consisting of a BML block (top) and a test
function executing the BML block and verifying the assertions implied by the
block (bottom). Note that the test case is fully specified using Custom Assertions
and Test Utility Methods, which make it very readable.

Many realizers support custom BML behavior elements. Such elements can be
tested using test cases in the realizer Specific Framework. The Custom Assertions
and Test Utility Methods described above can help in the creation of such test
cases.

5 Employing RealizerTester in Elckerlyc

The BML specification is an emerging standard, and at the moment of writing,
there are no realizers that fully implement the BML/feedback interface proposed
by the SAIBA initiative. Elckerlyc [10] implements several (but not all) BML be-
haviors and supports BML feedback. This made it a good first test-candidate for
RealizerTester. Here we describe our experiences with the integration of Realizer-
Tester in Elckerlyc’s software development process.

We have implemented an Elckerlyc Specific Testing Framework that sets up
a Fixture that uses Elckerlyc as its RUT. Elckerlyc is tested using the 19 test

6 http://www.junit.org/
7 Meszaros [7] calls this Implicit Setup and Teardown, functionality for this is available

in JUnit



<bml id="bml1">

<speech id="speech1" start="6">

<text>Hey punk <sync id="s1" />what do ya want?</text>

</speech>

<head id="nod1" action="ROTATION" rotation="X" start="speech1:s1"/>

</bml>

@Test public void testSpeechNodTimedToSync() {

realizerPort.performBML(readTestFile("testspeech_nodtimedtosync.xml"));

waitForBMLEndFeedback("bml1");

assertSyncsInOrder("bml1", "speech1", "start", "ready", "stroke_start",

"stroke", "s1", "stroke_end", "relax", "end");

assertAllBMLSyncsInBMLOrder("bml1", "nod1");

assertBlockStartAndStopFeedbacks("bml1");

assertRelativeSyncTime("bml1", "speech1", "start", 6);

assertLinkedSyncs("bml1", "speech1", "s1", "bml1", "nod1", "start");

assertNoExceptions();

assertNoWarnings();

}

Fig. 4. An example test case. A BML block (top) is sent to a RUT and the test func-
tion awaits the end feedback for the block (using the waitForBMLEndFeedback Test
Utility Method). It then verifies the correctness of the execution using various asser-
tions. The Custom Assertions assertSyncsInOrder, assertAllBMLSyncsInBMLOrder,
and assertBlockStartAndStopFeedbacks verify the message flow and behavior exe-
cution. They validate respectively that feedback on the syncs points of the speech1

and nod1 behavior was received in the correct order, and that the performance start
and stop feedback for the block was received once. The BML block specifies that sync
point speech:start should occur at relative (to the start of the block) time 6, and
that sync point speech1:syncstart1 should occur at the same time as nod1:start.
The Custom Assertions assertRelativeSyncTime and assertLinkedSyncs verify
these scheduling constraints. Finally, the Custom Assertions assertNoExceptions and
assertNoWarnings verify that the block was executed without failure.



cases provided by RealizerTester. An additional 12 test cases were implemented
to test BML behaviors that are specific to Elckerlyc.

Automatic testing has proven useful in both finding errors in Elckerlyc and
making sure that new functionality did not introduce errors. In some cases it
was useful to define test cases as acceptance tests for new functionality before
it was implemented.8 One such test highlighted deficiencies in Elckerlyc’s BML
scheduling algorithm. Passing the test (by an update to the scheduling algorithm
that fixed these deficiencies) marked the implementation of a certain software
requirement.

Automatic testing is more valuable if it is done as often as possible. However,
running all test cases on RealizerTester takes some time (roughly 3 minutes on
our test set of 31 tests), which might discourage its frequent use by Elckerlyc’s
developers. We have solved this issue by running the tests automatically on El-
ckerlyc’s continuous integration server9 whenever a developer commits changes
to its source repository. If a test fails, the developer responsible for the test fail-
ure is automatically notified. The integration server also keeps track of the test
performance over all builds, so it is possible to identify exactly what build intro-
duced an error. RealizerTester helps the Elckerlyc developers in the notification
of errors, but it does not directly help in identifying the exact location of errors,
since it is testing the realizer as a black box. The use of white box testing at
a smaller granularity helps in Elckerlyc’s defect localization. To this end, over
1000 unit tests (typically testing one class) and mid-range tests (testing groups
of classes working together) are employed to test Elckerlyc. The unit tests run
fast (in under 10 seconds) so developers run them very often to check the health
of newly created code. The test cases by RealizerTester are used in Elckerlyc to
test how different (unit tested) components work together as a whole, and, if
tests fail, as an indication of locations that require more unit testing.

Automatic testing is useful because it can be done as often as possible with-
out cost (e.g. in developer/human tester time). However, we have found that
manual inspection is more flexible than the rigid assertion verification employed
by automatic tests and that some errors in Elckerlyc can currently only be iden-
tified by manual inspection of the behavior of a virtual human. Therefore we
recommend regular visual inspection in addition to automatic testing.

Most visualization failures that have occurred in Elckerlyc so far are a re-
sult of physical simulation errors, resulting in gross movement errors (e.g. the
virtual human falling over, rolling through the scene uncontrollably, showing
large ‘hitches’ in movement etc.). The occurrence of such failures is often de-
pendent on the specific set of movement combinations and the virtual human
embodiment used. Because of this, there is often a long time span between the
introduction of such failures in the code base and their discovery, which makes
the failures hard to repair. SmartBody’s testing framework contributes auto-
matic visual regression testing (discussed in the next section). Integrating such

8 This is a common practise in the Test Driven Development software development
process [7].

9 Elckerlyc uses Jenkins (http://jenkins-ci.org/).



automatic visual testing in Elckerlyc would be quite helpful to detect these and
other visual regressions in a timely fashion.

6 Testing in SmartBody

SmartBody contributes a test program that provides automatic visual regression
testing mentioned above. This test program takes screen snapshots at predefined
moments in an ongoing simulation (e.g. the execution of a BML script). A base-
line of such screen snapshots is saved as input for subsequent test simulations.
During a later simulation, another snapshot at the same virtual time in the sim-
ulation is taken and then compared pixel by pixel against the baseline image.
If the images differ more than a predefined threshold (see below), then the test
can be marked as failing and examined manually by a tester. To this end, the
test program can provide the tester with an image that shows the baseline im-
age overlayed with the differences from the test snapshot. Fig. 5 shows some
examples of such difference images. A similar visual difference regression testing
method is used in the graphics industry [11].

By comparing the results of all aspects of the simulation via a graphical
image, the tester is better able to determine the impact of various changes to
the realizer. When implementing this method, it is important to position the
camera where it can detect meaningful differences between the images during a
test run. For example, to test head nodding, the camera should be positioned
close to and to the side of the virtual human’s face. Also, randomness during
simulations, such as reliance on real-time clocks, needs to be eliminated in order
to generate repeatable results. Different platforms and graphics drivers will also
tend to produce similar, but not identical results. This problem can often be
mitigated by setting a sufficiently high image comparison threshold. Changes in
functionality will often change the results of the test images that are desirable.
When this happens, the tester would then create a new set of baseline test images
based on the new functionality. Authoring such a graphical test thus involves
choosing a certain simulation, defining a set of important times to check for
image differences, defining a camera position and setting an image comparison
threshold (using the default value often suffices).

SmartBody’s test program goes beyond the tests performed by RealizerTester
by checking if the correct motion is generated, rather than by checking if the
Realizer sends the correct signals. However, unlike RealizerTester, SmartBody’s
testing system is Realizer specific and limited to provide only regression (and not
acceptance) testing functionality. This testing method is thus complementary to
testing by RealizerTester.

Therefore, RealizerTester is also used to test SmartBody. To this end, Smart-
Body has been extended to allow the feedback messages required by Realizer-
Tester, and our (draft 1.0) test scripts have been converted to the Vienna draft
BML standard used in SmartBody. Allowing SmartBody to be tested with
RealizerTester involved creating a SmartBody Specific Testing Framework and
a SmartBody adapter of RealizerPort (see also Section 4.1). This is a relatively



(a) (b) (c)

Fig. 5. Fig. 5(a): The simulation run differs from its baseline mostly by subtle differ-
ences in the position of the triangular mesh that represents the virtual human’s body
parts. These differences should not surpass the comparison threshold and should re-
sult in a successful test. Fig. 5(b): The character on the right differs from the baseline
in the amount of forward lean towards the gaze target. This difference should exceed
the comparison threshold and result in a failed test. Fig. 5(c): A test of SmartBody’s
locomotion system on uneven terrain. The baseline is shown on the right, the results
from the new test (with a different parameter configuration for e.g. walking velocity)
is shown as a silhouette of the virtual human on the left.

simple effort, taking roughly one day of programming. The BML standard only
specifies the information that should be contained in the feedback, but does not
specify the exact form/syntax of feedback. As a result, much of the implemen-
tation effort was spend in parsing SmartBody feedback and converting it to a
suitable form for RealizerTester. The process of connecting RealizerTester to a
new realizer is similar as connecting any behavior planner to a new realizer.
This means that behavior planner developers have to implement error prone
and somewhat elaborate feedback parsing for each realizer they connect their
behavior planner to. We strongly suggest to incorporate a standard syntax (for
example in XML) for feedback in the BML standard to alleviate this issue. By
testing SmartBody with RealizerTester, some minor implementation issues in
SmartBody were discovered. We did not find any interpretation differences in
the constraint satisfaction between SmartBody’s and Elckerlyc’s realization of
the test scripts. A minor difference in message flow was found. In Elckerlyc,
sync-point progress feedback messages are guaranteed to be sent in order (first
start, then ready, then stroke start, then stroke, then stroke end, then relax,
finally end). The performance start messages of a BML block is guaranteed to
occur before all sync-point progress feedback messages of the behaviors in the
block. The performance stop message of the BML block is guaranteed to oc-
cur after all sync-point progress feedback messages are sent. SmartBody does
not enforce such a message order; sync-point progress feedback messages and/or
performance start/stop feedback messages that occur at the same time are sent
in an undefined order.



7 Conclusion and Discussion

We have provided a corpus of BML behaviors and video material of their re-
alization in two realizers and a corpus of BML test cases. We aim to increase
the size of these corpora and welcome additions to them, especially from the au-
thors of realizers other than SmartBody and Elckerlyc. The test corpus and the
visual comparison movie and script corpus are available online under a creative
commons license.10

Preliminary inspection of the video corpus shows some expressivity issues in
the BML standard, but also shows that several behaviors are executed on the
two different realizers in a semantically equivalent manner. More importantly,
the process of creating the corpus created healthy competition between different
groups building realizers, each trying to enhance the animation quality of their
realizers to out do the other. It also motivated them to move toward more
compliance to the BML standard.

The modularity proposed by the SAIBA framework not only allows the reuse
of existing realizers with new Behavior Planners, but also reuse of test function-
ality and test cases for different realizers. The same modularity that allows one
to connect a Behavior Planner to any realizer, also allows RealizerTester to test
any realizer. RealizerTester and its test cases provides a starting point for a test
suite that can test the BML conformance of realizers. Such conformance tests
are common for software that interprets XML.11

When designing BML test scripts and their corresponding test assertions we
ran into several cases in which the BML specification lacked detail, was unclear,
or was unfinished. For example, the current BML specification does not state
whether two posture behaviors (using different body parts) could be active at the
same time, if gaze can be a persistent behavior, or how custom sync points in a
behavior are to be aligned in relation to its default BML sync points. The process
of designing a test set of BML scripts and their corresponding test assertions
can significantly contribute to the improvement of the BML standard itself, by
highlighting such issues.

Currently each test case consists of an BML script (in a separate XML file)
and a test function in RealizerTester. It would be beneficial to merge the test
function itself into the BML script, so that new tests can easily be authored with-
out modifying the source code of RealizerTester itself. For many BML scripts
(e.g. those that do not deliberately introduce error feedback or change the be-
havior flow), it should even be possible to automatically generate test assertions
directly from the script rather than authoring them by hand.

The BML standard contains several open issues and its interpretation may
vary between realizer developers. If adapted by multiple realizers, RealizerTester
can contribute to the formalization of the BML standard (by providing BML test
scripts and a formal description of their constraints, as expressed in test asser-

10 http://sourceforge.net/projects/realizertester/
11 For example, for Collada (http://www.khronos.org/collada/adopters/) or XHTML

(http://www.w3.org/MarkUp/Test/) interpreters.



tions) and help identify and resolve execution inconsistencies between realizers.
A realizer does not need to be fully BML compliant to be tested by Realizer-
Tester; supporting feedback and some BML behaviors is sufficient. We invite the
authors and users of realizers to join our realizer testing effort by contributing
test cases and hooking up their realizers to RealizerTester.

Acknowledgements

This research has been supported by the GATE project, funded by the Dutch
Organization for Scientific Research (NWO).

References

1. Personal communication with the authors of SmartBody, Greta, EMBR, and
RealActor (2010)

2. Čereković, A., Pandžić, I.S.: Multimodal behavior realization for embodied conver-
sational agents. Multimedia Tools and Applications pp. 1–22 (2010)

3. Ekman, P., Friesen, W.: Facial Action Coding System: A Technique for the Mea-
surement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

4. Heloir, A., Kipp, M.: Real-time animation of interactive agents: Specification and
realization. Applied Artificial Intelligence 24(6), 510–529 (2010)

5. Kopp, S., Krenn, B., Marsella, S., Marshall, A.N., Pelachaud, C., Pirker, H.,
Thórisson, K.R., Vilhjálmsson, H.H.: Towards a common framework for multi-
modal generation: The behavior markup language. In: Intelligent Virtual Agents.
LNCS, vol. 4133, pp. 205–217. Springer (2006)

6. Mancini, M., Niewiadomski, R., Bevacqua, E., Pelachaud, C.: Greta: a saiba com-
pliant eca system. In: Troisiéme Workshop sur les Agents Conversationnels Animés
(2008)

7. Meszaros, G.: xUnit Test Patterns: Refactoring Test Code. Addison-Wesley (2007)
8. Thiebaux, M., Marshall, A.N., Marsella, S., Kallmann, M.: Smartbody: Behav-

ior realization for embodied conversational agents. In: Autonomous Agents and
Multiagent Systems. pp. 151–158 (2008)

9. Vilhjálmsson, H.H., Cantelmo, N., Cassell, J., Chafai, N.E., Kipp, M., Kopp,
S., Mancini, M., Marsella, S.C., Marshall, A.N., Pelachaud, C., Ruttkay, Z.M.,
Thórisson, K.R., van Welbergen, H., van der Werf, R.J.: The behavior markup lan-
guage: Recent developments and challenges. In: Intelligent Virtual Agents. LNCS,
vol. 4722, pp. 99–120. Springer (2007)

10. van Welbergen, H., Reidsma, D., Ruttkay, Z.M., Zwiers, J.: Elckerlyc: A BML
realizer for continuous, multimodal interaction with a virtual human. Journal on
Multimodal User Interfaces 3(4), 271–284 (2010)

11. Yee, Y.H., Newman, A.: A perceptual metric for production testing. In: ACM
SIGGRAPH Sketches. p. 121. ACM (2004)


